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BERNDT E. SCHWERDTFEGER

ABsTRACT. Basics on DIRICHLET series and RIEMANN {(—function.

PREFACE

This note is based on a manuscript written in 1971. It gathers the salient features
of DIRICHLET-series and their convergence, in particular the RIEMANN (—function, its
functional equation® and some special values, including BERNOULLI numbers.

The appendix treats the analytical continuation of the (—function in an elementary
way, without using the functional equation.
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1. DIRICHLET SERIES

Lemma 1.1 (ABEL’s Lemma). Let (¢)neN, (bn)neN be sequences of complex num-
bers, let C,, = Zogugn ¢, be the n'" partial sum.

Then we have

n+p n+p—1
(1) Z cubu = n+pbn+p - Cnbn+1 + Z Cu(bz/ - bqul)
n+1 v=n-+1

If moreover |Cy| < C, b, € R is antitone, positive (i.e. by > by > by > --- > 0),
then we have

n-+p
| Z Cubu| S 2Cbn+1
n+1
Proof. ¢, =C, —C,_4
n+p n+p n+p n+p n+p—1
Z cl/bl/ - Z Cubu - Z Cuflbu - Z CI/bl/ - Z Cl/bl/+1
n+1 n+1 n+1 n+1 v=n

which gives the formula (1), the upper bound follows from this (see also [, V §2],
[2, T Ubung 16], 3, VIII §1], [6, VI §2]). O

Definition 1.1. A series like

is called a DIRICHLET series.
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Let f.(s) be the n'® partial sum. Traditionally the variable is written s = o +it.
Remark that |n®| =n°

Theorem 1.2 (Convergence of DIRICHLET series). If f(s) converges for one value
s = 8o, then f(s) converges for all s with o > o¢. More precisely:
f(s) converges uniformly on any compact subset of the open half plane o > oy.

Such a compact set is contained in a compact set of the form ¢ > o¢ + 6,
|s —so| < R (§ >0, R > 0 suitably chosen).

Proof. We will apply ABEL’s Lemma to

Cn = In y b = !

nSO nS_SO
We then have “

by = —

nS

and

Cn = fn(SO)
and get from ABEL that

n+p
_ _ & _ fn+p(80) _ fn(SO)
frap(s) = fals) = y:z:ml s (n+p)—0  (n+1)5—%
n+p—1
1 1
+ V:zng_l fl/(so)(ys—so - (V + 1)3—30 )

As f(so) converges, the partial sums are bounded

|fn(80)‘ <M
Let now be 0 > 09 + 9, |s — so| < R (6 > 0, R > 0 arbitrary)

1 1 ( ) v de
_ = (s—s -
vS—so (V + 1)8—80 0 Y ms—so-‘rl

and therefore

n+p—1 41
v o dx
n s < MR- o1
o) = In(o < s + G T MR X [ e
2M MR L
=5 5§  (n+1)°
R M
<(2+ )5 — 0 withn — oo

O
The infimum of o, such that f(s) converges for o > gy, is called the convergence
abscissa and will be denoted o¢ = oo(f).
Obviously, f is holomorphic in the half plane of convergence.
We need another theorem for calculating the convergence abscissa.
Theorem 1.3. Let A, =>"_ a,.
If |A,] < A-n° forn >0 (with suitable 01 >0, A > 0), then og < 07.

In particular, for bounded A,, we have o¢ < 0.

See [3, VIII §1], [6, VI prop. 8, 9].
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Proof. We have (¢, = an, b, =n~° in ABEL’s Lemma)

n+p
ay —s —s
Forn(8) = fuls) = D 5= Anip(n+p)7" = An(n+1)
v=n-+1
n+p—1
+ Y AT -+
v=n-+1

For s with 0 > o1 > 0 (in particular s # 0) we have

v+1 dx
—S8 —S _ .
v i—w+1)"=s /V o

For the absolute value we get
[frip(s) = fu(s)| < A-(n+p)7 77+ A-(n+1)77°

nipt vl iy
3 A / S
v=n-+1
n+p 1
. (0—01)
<2A-n D Ads) Y / p—
v=n-+1
<24 -0~ L A |s|(0 — o) H(n+1)"(07)
A
§(2+£) — 0 with n — oo.

o—01" N7
We have shown that f(s) is convergent for o > o1, and therefore we must have
g1 Z agQ- O

2. RIEMANN (—FUNCTION

The RIEMANN (—function is the function to the DIRICHLET series a,, = 1:

1
= —
n>1

From the last theorem we see we can take 01 = 1 (4,, = n). As the harmonic series
diverges, ¢ has a pole at s = 1, therefore we have precisely oy = 1.

Theorem 2.1 (analytical continuation). ¢ can be analytically continued to the half
plane o > 0 as a meromorphic function with a single pole at s = 1. This pole is
simple with residue = 1.

Proof. Consider the alternating ngfunction
1
Ca(s )—1_*4'3*5—"‘

The sum of the coefficients is either 1 or 0, hence bounded and o9 < 0. On the
other side it diverges for s = 0, hence exactly oy = 0. If we add

2 2

*C (s) =55+ e

to the (o—function we get the Cffunctlon.

Gas) + 2767 1¢(s) = ¢(s)

and we obtain
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yielding the meromorphic continuation in o > 0.

Similarly, for k = 2,3,4,... we let
k—1 1

1 1
=14+ — 4+... —
Cr(s) tog Tt =L o T L +
This time the sum of the coefficients takes on the values 0,1,2,...,k — 1, and are
bounded again and the same argument as above shows that gy = 0.
2) C(S):L(Si k=234, ..
1= ksfl

Poles of ¢ can only occur, where the denominator in (2) vanishes, because the
numerator is holomorphic (in the right half plane). This means for & = 2,3 for
example that

27t =1, 3 '=1

which necessarily implies that

2min n 2mim
S = =
log(2) log(3)
which would give 2™ = 3", hence n = m = 0. Therefore s = 1 is the only

singularity.

We will finally show that the pole at s = 1 has the claimed properties: from the
graph of 1/27 we can read that for o > 1 we have

1 ° 1 > 1
=/ diﬁ *—(U)§1+/ dj=1+
1 12

x° ne oc—1
n>1

so we have 1 < (0 — 1){(0) < ¢ and
(3) lim(oc —1)¢(0) =1

o—1

If now ¢(s) = Y. a,,(s —1)" is the LAURENT development around 1, we get from
(3) that a, =0 for n < —2 (simple pole) and a_; = 1 (residue) O

RIEMANN [4, VII, p. 147] makes use of the I'—function to exhibit the analytical
continuation of  to all of C and exposing its functional equation at the same time.
Theorem 2.2 (functional equation).

P i =1 (5

2

)71'*?((1 —5)

Proof. We follow the reasoning of RIEMANN. He starts with

iF(E)W*% :/ e Ty
2 0

ns

and introducing the theta series”

summing up gives

2remark that 2i(z) + 1 = 9(0, zi), see [7]
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The function g(t) = exp(—t2mz) has the FOURIER transform §(t) = 22 exp(—t27/z).

The PoI1ssoN formula
> g(n) => G(n)

implies the theta functional equation
2p(x) +1 =27 (2p(1/z) + 1).

Splitting the integral into floo + fol and substituting this functional equation into
the second integral he finally obtains

C(s)l“(g)w—% :/1“¢(x)x§—1dx+/0 (1/2)2 T dx +
1

1
+§/O (z%g) fngl)dx:

1 1 ° s _14s
_S_l—;-i-/l Y(@) (x> +27 7 )de

which is invariant under s — 1 — s. O

See the appendix for another approach to analytical continuation.

3. BERNOULLI NUMBERS

See [1, V §8] p. 408, [6, VII §4] p. 147.

The numbers B,, defined in the development of the power series

T B, ,
(4) 1+§:m%

e? —1
n>1

are called BERNOULLI-numbers. They are rational, as can be seen from the recur-
sion formula (6) below.

For a polynomial
fl@)=ap+az+ - +apa”
we will write symbolically
f(B)=ao+aBi+- - +a,By

and similarly for power series. With this convention (4) can be re-written

T
5 BI:
() e pra—

You see immediately by multiplying the power series that
0% . eBz — e(a-ﬁ-B)m
Theorem 3.1 (recursion formula for BERNOULLI numbers).

(6) (1+B)"-B"=0 n>2

Proof. From (5) it follows that
= . eB;v . eBa: _ e(lJrB)z o eBz

and you get the result by comparing the coefficients on both sides ! O
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In particular (6) yields for n = 2: By = —%. As is easy to see, the function
x x "
ex—1+§:1+ZBnH
n>2

is even, therefore By,11 = 0 (n > 1). This is the reason why sometimes only the
even BERNOULLI numbers are numerated. You find a table with the first 12 resp.
14 even BERNOULLI numbers in BOREWICZ SAFAREVIC [1] resp. SERRE [0] (the
latter denotes our number Ba, by (—=1)""1B,).

Theorem 3.2. [1, V §8 Satz 6]

(27T)2m

(7) ¢(2m) = (—1)m71m32m

m>1

Proof. A simple rearrangement of [2, V §2.3 (3.2)] p. 155 gives

1 2z
tz=— —
cotz Z+Zz2_(7m)2

n>1
As
CoS 2 e +e? 21
cotz = = = -
sin z ez — g~z etz — 1
replacing x = 2iz gives
x B T 222
8 —ePT =1 — — - - @
®) e’ —1 2+;x2+(27m)2

Now we have
x T \2m
— -1 m—1
22 + (27n)? Z( ) (27rn>
m>1
we put this into (8) and sum up over the n to obtain

Bz - m—1 2- <(2m) 2m
-2 _qym-125em)
Iy LV e

and by comparison of coefficients this yields (7). O

The values of ((2n + 1) are unknown. In 1978 APERY proved ((3) ¢ Q.

Special values for n € N,n > 0 are:
¢(—2n)=0 (“trivial’ zeros)
¢(1—=2n)=—DBy,/2n € Q (rational values)

All non—trivial zeros are in the critical strip 0 < ¢ < 1. RIEMANN found it most
likely that they all lie on the critical line 0 = § (RIEMANN conjecture). This is

known to be true for Ry zeros, but only some millions of them have explicitely been
calculated.

APPENDIX A. ANALYTICAL CONTINUATION OF THE (—FUNCTION

Let
1 4k
fk,n(s):/o 7(n+t)s+kdt fork>0,n>1
These functions are holomorphic everywhere in C: as obviously

1 ( 1 B 1 )
s—1'ns—1  (n+41)s—1

Jon(s) =
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is holomorphic in C, and we have
ntl (p Nk k k ; '
fint) = [ e =3 (F) e s+ 0

Since | fr,n(s)] <

———, the sum
— npotk’

fie(s) =D frm(s)

1
converges for o > 1 —k and is holomorphic in this half plane. In particular fo(s) = 1
1 thrl
The function I T has the derivative (in ¢):
t* s+k tht!

(n+t)5tF k41 (n+t)sthit
and by integration from 0 to 1 we get

s+k 1 1
fen(s) — mfkﬂ,n(s) T k+1 (n+ 1)s+k
and the summation from 1 to oo gives in the half plane o0 > 1 — k
s+ k 1
- — = — k)—1
1) = R () = g (G50 — 1)

which implies by induction the formula valid for ¢ > 1:

Kk .
1+si1 —((s)—z<s+z—1>ii1(g(s+i)—1)+ (2:?)1‘“1(8)

i=1

From this we conclude successively (k = 0,1,2,...) the holomorphy of the function on the
left hand side in the whole s—plane.
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