ζ -FUNCTION AND BERNOULLI NUMBERS

BERNDT E. SCHWERDTFEGER

Abstract. Basics on Dirichlet series and Riemann ζ -function.

Preface

This note is based on a manuscript written in 1971. It gathers the salient features of DIRICHLET-series and their convergence, in particular the RIEMANN ζ -function, its functional equation¹ and some special values, including BERNOULLI numbers.

The appendix treats the analytical continuation of the ζ -function in an elementary way, without using the functional equation.

Berlin, 28 February 2011

© 2001–2015 Berndt E. Schwerdtfeger v1.1, 2015-03-04

1. Dirichlet series

Lemma 1.1 (ABEL's Lemma). Let $(c_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$ be sequences of complex numbers, let $C_n = \sum_{0 \le \nu \le n} c_{\nu}$ be the n^{th} partial sum.

Then we have

(1)
$$\sum_{n+1}^{n+p} c_{\nu} b_{\nu} = C_{n+p} b_{n+p} - C_n b_{n+1} + \sum_{\nu=n+1}^{n+p-1} C_{\nu} (b_{\nu} - b_{\nu+1})$$

If moreover $|C_n| \leq C$, $b_n \in \mathbf{R}$ is antitone, positive (i.e. $b_0 \geq b_1 \geq b_2 \geq \cdots \geq 0$), then we have

$$\left|\sum_{n+1}^{n+p} c_{\nu} b_{\nu}\right| \le 2Cb_{n+1}$$

Proof. $c_{\nu} = C_{\nu} - C_{\nu-1}$

$$\sum_{n+1}^{n+p} c_{\nu} b_{\nu} = \sum_{n+1}^{n+p} C_{\nu} b_{\nu} - \sum_{n+1}^{n+p} C_{\nu-1} b_{\nu} = \sum_{n+1}^{n+p} C_{\nu} b_{\nu} - \sum_{\nu=n}^{n+p-1} C_{\nu} b_{\nu+1} b_{\nu}$$

which gives the formula (1), the upper bound follows from this (see also [1, V §2], [2, I Übung 16], [3, VIII §1], [6, VI §2]).

Definition 1.1. A series like

$$f(s) = \sum_{n \ge 1} \frac{a_n}{n^s}$$

is called a DIRICHLET *series*.

²⁰¹⁰ Mathematics Subject Classification. Primary 11M06; Secondary 11B68, 30B50. Key words and phrases. ζ -function, Dirichlet series, Bernoulli numbers. ¹added in 2011

Let $f_n(s)$ be the n^{th} partial sum. Traditionally the variable is written $s = \sigma + it$. Remark that $|n^s| = n^{\sigma}$

Theorem 1.2 (Convergence of DIRICHLET series). If f(s) converges for one value $s = s_0$, then f(s) converges for all s with $\sigma > \sigma_0$. More precisely: f(s) converges uniformly on any compact subset of the open half plane $\sigma > \sigma_0$.

Such a compact set is contained in a compact set of the form $\sigma \geq \sigma_0 + \delta$, $|s - s_0| \leq R$ ($\delta > 0$, R > 0 suitably chosen).

Proof. We will apply ABEL's Lemma to

$$c_n = \frac{a_n}{n^{s_0}}, \ b_n = \frac{1}{n^{s-s_0}}$$

We then have

$$c_n b_n = \frac{a_n}{n^s}$$

and

$$C_n = f_n(s_0)$$

and get from ABEL that

$$f_{n+p}(s) - f_n(s) = \sum_{\nu=n+1}^{n+p} \frac{a_{\nu}}{\nu^s} = \frac{f_{n+p}(s_0)}{(n+p)^{s-s_0}} - \frac{f_n(s_0)}{(n+1)^{s-s_0}} + \sum_{\nu=n+1}^{n+p-1} f_{\nu}(s_0) \left(\frac{1}{\nu^{s-s_0}} - \frac{1}{(\nu+1)^{s-s_0}}\right)$$

As $f(s_0)$ converges, the partial sums are bounded

$$|f_n(s_0)| \le M$$

Let now be $\sigma \ge \sigma_0 + \delta$, $|s - s_0| \le R$ ($\delta > 0$, R > 0 arbitrary)

$$\frac{1}{\nu^{s-s_0}} - \frac{1}{(\nu+1)^{s-s_0}} = (s-s_0) \int_{\nu}^{\nu+1} \frac{dx}{x^{s-s_0+1}}$$

and therefore

$$\begin{split} |f_{n+p}(s) - f_n(s)| &\leq \frac{M}{(n+p)^{\delta}} + \frac{M}{(n+1)^{\delta}} + MR \cdot \sum_{\nu=n+1}^{n+p-1} \int_{\nu}^{\nu+1} \frac{dx}{x^{\delta+1}} \\ &\leq \frac{2M}{n^{\delta}} + \frac{MR}{\delta} \cdot \frac{1}{(n+1)^{\delta}} \\ &\leq (2 + \frac{R}{\delta}) \frac{M}{n^{\delta}} \longrightarrow 0 \quad \text{with } n \longrightarrow \infty. \end{split}$$

The infimum of σ_0 , such that f(s) converges for $\sigma > \sigma_0$, is called the *convergence* abscissa and will be denoted $\sigma_0 = \sigma_0(f)$.

Obviously, f is holomorphic in the half plane of convergence.

We need another theorem for calculating the convergence abscissa.

Theorem 1.3. Let $A_n = \sum_{\nu=1}^n a_{\nu}$.

If $|A_n| \leq A \cdot n^{\sigma_1}$ for $n \gg 0$ (with suitable $\sigma_1 \geq 0$, A > 0), then $\sigma_0 \leq \sigma_1$. In particular, for bounded A_n we have $\sigma_0 \leq 0$.

See [3, VIII §1], [6, VI prop. 8, 9].

 $\mathbf{2}$

Proof. We have $(c_n = a_n, b_n = n^{-s}$ in ABEL's Lemma)

$$f_{n+p}(s) - f_n(s) = \sum_{\nu=n+1}^{n+p} \frac{a_{\nu}}{\nu^s} = A_{n+p}(n+p)^{-s} - A_n(n+1)^{-s} + \sum_{\nu=n+1}^{n+p-1} A_{\nu} \left(\nu^{-s} - (\nu+1)^{-s}\right)$$

For s with $\sigma > \sigma_1 \ge 0$ (in particular $s \ne 0$) we have

$$\nu^{-s} - (\nu+1)^{-s} = s \cdot \int_{\nu}^{\nu+1} \frac{dx}{x^{s+1}}$$

For the absolute value we get

$$\begin{split} |f_{n+p}(s) - f_n(s)| &\leq A \cdot (n+p)^{\sigma_1 - \sigma} + A \cdot (n+1)^{\sigma_1 - \sigma} \\ &+ \sum_{\nu=n+1}^{n+p-1} A \cdot \nu^{\sigma_1} |s| \cdot \int_{\nu}^{\nu+1} \frac{dx}{x^{\sigma+1}} \\ &\leq 2A \cdot n^{-(\sigma-\sigma_1)} + A \cdot |s| \sum_{\nu=n+1}^{n+p-1} \int_{\nu}^{\nu+1} \frac{dx}{x^{\sigma-\sigma_1+1}} \\ &\leq 2A \cdot n^{-(\sigma-\sigma_1)} + A \cdot |s| (\sigma-\sigma_1)^{-1} (n+1)^{-(\sigma-\sigma_1)} \\ &\leq \left(2 + \frac{|s|}{\sigma - \sigma_1}\right) \frac{A}{n^{\sigma-\sigma_1}} \longrightarrow 0 \quad \text{with } n \longrightarrow \infty. \end{split}$$

We have shown that f(s) is convergent for $\sigma > \sigma_1$, and therefore we must have $\sigma_1 \ge \sigma_0$.

2. RIEMANN ζ -Function

The RIEMANN ζ -function is the function to the DIRICHLET series $a_n = 1$:

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$$

From the last theorem we see we can take $\sigma_1 = 1$ $(A_n = n)$. As the harmonic series diverges, ζ has a *pole* at s = 1, therefore we have precisely $\sigma_0 = 1$.

Theorem 2.1 (analytical continuation). ζ can be analytically continued to the half plane $\sigma > 0$ as a meromorphic function with a single pole at s = 1. This pole is simple with residue = 1.

Proof. Consider the alternating ζ_2 -function

$$\zeta_2(s) = 1 - \frac{1}{2^s} + \frac{1}{3^s} - + \dots$$

The sum of the coefficients is either 1 or 0, hence bounded and $\sigma_0 \leq 0$. On the other side it diverges for s = 0, hence exactly $\sigma_0 = 0$. If we add

$$\frac{2}{2^s}\zeta(s) = \frac{2}{2^s} + \frac{2}{4^s} + \dots$$

to the ζ_2 -function we get the ζ -function:

$$\zeta_2(s) + 2^{-(s-1)}\zeta(s) = \zeta(s)$$

and we obtain

$$\zeta(s) = \frac{\zeta_2(s)}{1 - \frac{1}{2^{s-1}}}$$

yielding the meromorphic continuation in $\sigma > 0$.

Similarly, for $k = 2, 3, 4, \ldots$ we let

$$\zeta_k(s) = 1 + \frac{1}{2^s} + \dots + \frac{1}{(k-1)^s} - \frac{k-1}{k^s} + \frac{1}{(k+1)^s} + \dots$$

This time the sum of the coefficients takes on the values 0, 1, 2, ..., k - 1, and are bounded again and the same argument as above shows that $\sigma_0 = 0$.

(2)
$$\zeta(s) = \frac{\zeta_k(s)}{1 - \frac{1}{k^{s-1}}} \qquad k = 2, 3, 4, \dots$$

Poles of ζ can only occur, where the denominator in (2) vanishes, because the numerator is holomorphic (in the right half plane). This means for k = 2, 3 for example that

$$2^{s-1} = 1, \quad 3^{s-1} = 1$$

which necessarily implies that

$$s = 1 + \frac{2\pi in}{\log(2)} = 1 + \frac{2\pi im}{\log(3)}$$

which would give $2^m = 3^n$, hence n = m = 0. Therefore s = 1 is the only singularity.

We will finally show that the pole at s = 1 has the claimed properties: from the graph of $1/x^{\sigma}$ we can read that for $\sigma > 1$ we have

$$\frac{1}{\sigma-1} = \int_1^\infty \frac{dx}{x^\sigma} \le \sum_{n\ge 1} \frac{1}{n^\sigma} = \zeta(\sigma) \le 1 + \int_1^\infty \frac{dx}{x^\sigma} = 1 + \frac{1}{\sigma-1}$$

so we have $1 \leq (\sigma - 1)\zeta(\sigma) \leq \sigma$ and

(3)
$$\lim_{\sigma \to 1} (\sigma - 1)\zeta(\sigma) = 1$$

If now $\zeta(s) = \sum_{-\infty}^{+\infty} a_n (s-1)^n$ is the LAURENT development around 1, we get from (3) that $a_n = 0$ for $n \leq -2$ (simple pole) and $a_{-1} = 1$ (residue)

RIEMANN [4, VII, p. 147] makes use of the Γ -function to exhibit the analytical continuation of ζ to all of **C** and exposing its functional equation at the same time.

Theorem 2.2 (functional equation).

$$\Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \Gamma\left(\frac{1-s}{2}\right)\pi^{-\frac{1-s}{2}}\zeta(1-s)$$

Proof. We follow the reasoning of RIEMANN. He starts with

$$\frac{1}{n^s}\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}} = \int_0^\infty e^{-n^2\pi x} x^{\frac{s}{2}-1} dx$$

and introducing the *theta* series²

$$\psi(x) = \sum_{1}^{\infty} e^{-n^2 \pi x}$$

summing up gives

$$\zeta(s)\Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}} = \int_0^\infty \psi(x)x^{\frac{s}{2}-1}dx$$

²remark that $2\psi(x) + 1 = \vartheta(0, xi)$, see [5]

The function $g(t) = \exp(-t^2\pi x)$ has the FOURIER transform $\widehat{g}(t) = x^{-\frac{1}{2}} \exp(-t^2\pi/x)$. The POISSON formula

$$\sum g(n) = \sum \widehat{g}(n)$$

implies the theta functional equation

$$2\psi(x) + 1 = x^{-\frac{1}{2}}(2\psi(1/x) + 1).$$

Splitting the integral into $\int_1^\infty + \int_0^1$ and substituting this functional equation into the second integral he finally obtains

$$\begin{aligned} \zeta(s)\Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}} &= \int_{1}^{\infty}\psi(x)x^{\frac{s}{2}-1}dx + \int_{0}^{1}\psi(1/x)x^{\frac{s-3}{2}}dx + \\ &+ \frac{1}{2}\int_{0}^{1}\left(x^{\frac{s-3}{2}} - x^{\frac{s}{2}-1}\right)dx = \\ &= \frac{1}{s-1} - \frac{1}{s} + \int_{1}^{\infty}\psi(x)\left(x^{\frac{s}{2}-1} + x^{-\frac{1+s}{2}}\right)dx \end{aligned}$$

which is invariant under $s \mapsto 1 - s$.

See the appendix for another approach to analytical continuation.

3. Bernoulli numbers

See [1, V §8] p. 408, [6, VII §4] p. 147.

The numbers B_n defined in the development of the power series

(4)
$$\frac{x}{e^x - 1} = 1 + \sum_{n \ge 1} \frac{B_n}{n!} x^n$$

are called BERNOULLI-numbers. They are *rational*, as can be seen from the recursion formula (6) below.

For a polynomial

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

we will write symbolically

$$f(B) = a_0 + a_1 B_1 + \dots + a_n B_n$$

and similarly for power series. With this convention (4) can be re-written

(5)
$$e^{Bx} = \frac{x}{e^x - 1}$$

You see immediately by multiplying the power series that

$$e^{ax} \cdot e^{Bx} = e^{(a+B)x}$$

Theorem 3.1 (recursion formula for BERNOULLI numbers).

(6)
$$(1+B)^n - B^n = 0 \qquad n \ge 2$$

Proof. From (5) it follows that

$$x = e^x \cdot e^{Bx} - e^{Bx} = e^{(1+B)x} - e^{Bx}$$

and you get the result by comparing the coefficients on both sides !

In particular (6) yields for n = 2: $B_1 = -\frac{1}{2}$. As is easy to see, the function

$$\frac{x}{e^x - 1} + \frac{x}{2} = 1 + \sum_{n \ge 2} B_n \frac{x^n}{n!}$$

is even, therefore $B_{2n+1} = 0$ $(n \ge 1)$. This is the reason why sometimes only the even BERNOULLI numbers are numerated. You find a table with the first 12 resp. 14 even BERNOULLI numbers in BOREWICZ-ŠAFAREVIČ [1] resp. SERRE [6] (the latter denotes our number B_{2n} by $(-1)^{n+1}B_n$).

Theorem 3.2. [1, V §8 Satz 6]

(7)
$$\zeta(2m) = (-1)^{m-1} \frac{(2\pi)^{2m}}{2 \cdot (2m)!} B_{2m} \qquad m \ge 1$$

Proof. A simple rearrangement of [2, V §2.3 (3.2)] p. 155 gives

$$\cot z = \frac{1}{z} + \sum_{n\geq 1} \frac{2z}{z^2 - (\pi n)^2}$$

As

$$\cot z = \frac{\cos z}{\sin z} = i \frac{e^{iz} + e^{-iz}}{e^{iz} - e^{-iz}} = i + \frac{2i}{e^{2iz} - 1}$$

replacing x = 2iz gives

(8)
$$\frac{x}{e^x - 1} = e^{Bx} = 1 - \frac{x}{2} + \sum_{n \ge 1} \frac{2x^2}{x^2 + (2\pi n)^2}$$

Now we have

$$\frac{x^2}{x^2 + (2\pi n)^2} = \sum_{m \ge 1} (-1)^{m-1} \left(\frac{x}{2\pi n}\right)^{2m}$$

we put this into (8) and sum up over the *n* to obtain

$$e^{Bx} = 1 - \frac{x}{2} + \sum_{m \ge 1} (-1)^{m-1} \frac{2 \cdot \zeta(2m)}{(2\pi)^{2m}} x^{2m}$$

and by comparison of coefficients this yields (7).

The values of $\zeta(2n+1)$ are unknown. In 1978 APÉRY proved $\zeta(3) \notin \mathbf{Q}$.

Special values for $n \in \mathbf{N}, n > 0$ are:

$$\zeta(-2n) = 0 \qquad (`trivial' zeros)$$

$$\zeta(1-2n) = -B_{2n}/2n \in \mathbf{Q} \qquad (rational values)$$

All non-trivial zeros are in the *critical strip* $0 \le \sigma \le 1$. RIEMANN found it most likely that they all lie on the *critical line* $\sigma = \frac{1}{2}$ (RIEMANN conjecture). This is known to be true for \aleph_0 zeros, but only some millions of them have explicitly been calculated.

Appendix A. Analytical continuation of the ζ -function

Let

$$f_{k,n}(s) = \int_0^1 \frac{t^k}{(n+t)^{s+k}} dt$$
 for $k \ge 0, n \ge 1$

These functions are holomorphic everywhere in \mathbf{C} : as obviously

$$f_{0,n}(s) = \frac{1}{s-1} \left(\frac{1}{n^{s-1}} - \frac{1}{(n+1)^{s-1}} \right)$$

 $\mathbf{6}$

is holomorphic in **C**, and we have

$$f_{k,n}(s) = \int_{n}^{n+1} \frac{(t-n)^{k}}{t^{s+k}} dt = \sum_{i=0}^{k} \binom{k}{i} (-n)^{i} f_{0,n}(s+i)$$

Since $|f_{k,n}(s)| \leq \frac{1}{n^{\sigma+k}}$, the sum

$$f_k(s) = \sum_{n=1}^{\infty} f_{k,n}(s)$$

converges for $\sigma > 1 - k$ and is holomorphic in this half plane. In particular $f_0(s) = \frac{1}{s-1}$.

The function $\frac{1}{k+1} \cdot \frac{t^{k+1}}{(n+t)^{s+k}}$ has the derivative (in t):

$$\frac{t^k}{(n+t)^{s+k}} - \frac{s+k}{k+1} \cdot \frac{t^{k+1}}{(n+t)^{s+k+1}}$$

and by integration from 0 to 1 we get

$$f_{k,n}(s) - \frac{s+k}{k+1} f_{k+1,n}(s) = \frac{1}{k+1} \cdot \frac{1}{(n+1)^{s+k}}$$

and the summation from 1 to ∞ gives in the half plane $\sigma>1-k$

$$f_k(s) - \frac{s+k}{k+1} f_{k+1}(s) = \frac{1}{k+1} \left(\zeta(s+k) - 1 \right)$$

which implies by induction the formula valid for $\sigma > 1$:

$$1 + \frac{1}{s-1} - \zeta(s) = \sum_{i=1}^{k} {\binom{s+i-1}{i}} \frac{1}{i+1} (\zeta(s+i) - 1) + {\binom{s+k}{k+1}} f_{k+1}(s)$$

From this we conclude successively (k = 0, 1, 2, ...) the holomorphy of the function on the left hand side in the whole *s*-plane.

References

- [1] Senon I. Borewicz and Igor R. Šafarevič, Zahlentheorie, Birkhäuser, Basel, Stuttgart, 1966.
- [2] Henri Cartan, Elementare Theorie der Analytische Funktionen einer oder mehrerer komplexen Veränderlichen, Hochschultaschenbücher, vol. 112, Bibliographisches Institut, Mannheim, Wien, Zürich, 1966.
- [3] Serge Lang, Algebraic Number Theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer, 1994.
- [4] Bernhard Riemann, Gesammelte Mathematische Werke, 2. Aufl., Teubner, Leipzig, 1892.
- [5] Berndt E. Schwerdtfeger, On theta functions (2007), available at http:// berndt-schwerdtfeger.de/wp-content/uploads/pdf/theta.pdf.
- [6] Jean-Pierre Serre, Cours d'arithmétique, Presses Universitaires de France, Paris, 1970.