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Abstract. Basics on Dirichlet series and Riemann ζ–function.

Preface

This note is based on a manuscript written in 1971. It gathers the salient features
of Dirichlet–series and their convergence, in particular the Riemann ζ–function, its
functional equation1 and some special values, including Bernoulli numbers.

The appendix treats the analytical continuation of the ζ–function in an elementary
way, without using the functional equation.
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1. Dirichlet series

Lemma 1.1 (Abel’s Lemma). Let (cn)n∈N, (bn)n∈N be sequences of complex num-
bers, let Cn =

∑
0≤ν≤n cν be the nth partial sum.

Then we have
n+p∑
n+1

cνbν = Cn+pbn+p − Cnbn+1 +

n+p−1∑
ν=n+1

Cν(bν − bν+1)(1)

If moreover |Cn| ≤ C, bn ∈ R is antitone, positive (i.e. b0 ≥ b1 ≥ b2 ≥ · · · ≥ 0),
then we have

|
n+p∑
n+1

cνbν | ≤ 2Cbn+1

Proof. cν = Cν − Cν−1
n+p∑
n+1

cνbν =

n+p∑
n+1

Cνbν −
n+p∑
n+1

Cν−1bν =

n+p∑
n+1

Cνbν −
n+p−1∑
ν=n

Cνbν+1

which gives the formula (1), the upper bound follows from this (see also [1, V §2],
[2, I Übung 16], [3, VIII §1], [6, VI §2]). �

Definition 1.1. A series like

f(s) =
∑
n≥1

an
ns

is called a Dirichlet series.

2010 Mathematics Subject Classification. Primary 11M06; Secondary 11B68, 30B50.
Key words and phrases. ζ–function, Dirichlet series, Bernoulli numbers.
1added in 2011

1



2 BERNDT E. SCHWERDTFEGER

Let fn(s) be the nth partial sum. Traditionally the variable is written s = σ+ it.
Remark that |ns| = nσ

Theorem 1.2 (Convergence of Dirichlet series). If f(s) converges for one value
s = s0, then f(s) converges for all s with σ > σ0. More precisely:
f(s) converges uniformly on any compact subset of the open half plane σ > σ0.

Such a compact set is contained in a compact set of the form σ ≥ σ0 + δ,
|s− s0| ≤ R (δ > 0, R > 0 suitably chosen).

Proof. We will apply Abel’s Lemma to

cn =
an
ns0

, bn =
1

ns−s0

We then have
cnbn =

an
ns

and
Cn = fn(s0)

and get from Abel that

fn+p(s)− fn(s) =

n+p∑
ν=n+1

aν
νs

=
fn+p(s0)

(n+ p)s−s0
− fn(s0)

(n+ 1)s−s0

+

n+p−1∑
ν=n+1

fν(s0)
( 1

νs−s0
− 1

(ν + 1)s−s0

)
As f(s0) converges, the partial sums are bounded

|fn(s0)| ≤M
Let now be σ ≥ σ0 + δ, |s− s0| ≤ R (δ > 0, R > 0 arbitrary)

1

νs−s0
− 1

(ν + 1)s−s0
= (s− s0)

∫ ν+1

ν

dx

xs−s0+1

and therefore

|fn+p(s)− fn(s)| ≤ M

(n+ p)δ
+

M

(n+ 1)δ
+MR ·

n+p−1∑
ν=n+1

∫ ν+1

ν

dx

xδ+1

≤ 2M

nδ
+
MR

δ
· 1

(n+ 1)δ

≤ (2 +
R

δ
)
M

nδ
−→ 0 with n −→∞.

�

The infimum of σ0, such that f(s) converges for σ > σ0, is called the convergence
abscissa and will be denoted σ0 = σ0(f).

Obviously, f is holomorphic in the half plane of convergence.

We need another theorem for calculating the convergence abscissa.

Theorem 1.3. Let An =
∑n
ν=1 aν .

If |An| ≤ A · nσ1 for n� 0 (with suitable σ1 ≥ 0, A > 0), then σ0 ≤ σ1.

In particular, for bounded An we have σ0 ≤ 0.

See [3, VIII §1], [6, VI prop. 8, 9].
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Proof. We have (cn = an, bn = n−s in Abel’s Lemma)

fn+p(s)− fn(s) =

n+p∑
ν=n+1

aν
νs

= An+p(n+ p)−s −An(n+ 1)−s

+

n+p−1∑
ν=n+1

Aν
(
ν−s − (ν + 1)−s

)
For s with σ > σ1 ≥ 0 (in particular s 6= 0) we have

ν−s − (ν + 1)−s = s ·
∫ ν+1

ν

dx

xs+1

For the absolute value we get

|fn+p(s)− fn(s)| ≤ A · (n+ p)σ1−σ +A · (n+ 1)σ1−σ

+

n+p−1∑
ν=n+1

A · νσ1 |s| ·
∫ ν+1

ν

dx

xσ+1

≤ 2A · n−(σ−σ1) +A · |s|
n+p−1∑
ν=n+1

∫ ν+1

ν

dx

xσ−σ1+1

≤ 2A · n−(σ−σ1) +A · |s|(σ − σ1)−1(n+ 1)−(σ−σ1)

≤
(
2 +

|s|
σ − σ1

) A

nσ−σ1
−→ 0 with n −→∞.

We have shown that f(s) is convergent for σ > σ1, and therefore we must have
σ1 ≥ σ0. �

2. Riemann ζ–function

The Riemann ζ–function is the function to the Dirichlet series an = 1:

ζ(s) =
∑
n≥1

1

ns

From the last theorem we see we can take σ1 = 1 (An = n). As the harmonic series
diverges, ζ has a pole at s = 1, therefore we have precisely σ0 = 1.

Theorem 2.1 (analytical continuation). ζ can be analytically continued to the half
plane σ > 0 as a meromorphic function with a single pole at s = 1. This pole is
simple with residue = 1.

Proof. Consider the alternating ζ2–function

ζ2(s) = 1− 1

2s
+

1

3s
−+ . . .

The sum of the coefficients is either 1 or 0, hence bounded and σ0 ≤ 0. On the
other side it diverges for s = 0, hence exactly σ0 = 0. If we add

2

2s
ζ(s) =

2

2s
+

2

4s
+ . . .

to the ζ2–function we get the ζ–function:

ζ2(s) + 2−(s−1)ζ(s) = ζ(s)

and we obtain
ζ(s) =

ζ2(s)

1− 1

2s−1
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yielding the meromorphic continuation in σ > 0.

Similarly, for k = 2, 3, 4, . . . we let

ζk(s) = 1 +
1

2s
+ · · ·+ 1

(k − 1)s
− k − 1

ks
+

1

(k + 1)s
+ · · ·

This time the sum of the coefficients takes on the values 0, 1, 2, . . . , k − 1, and are
bounded again and the same argument as above shows that σ0 = 0.

(2) ζ(s) =
ζk(s)

1− 1

ks−1

k = 2, 3, 4, . . .

Poles of ζ can only occur, where the denominator in (2) vanishes, because the
numerator is holomorphic (in the right half plane). This means for k = 2, 3 for
example that

2s−1 = 1, 3s−1 = 1

which necessarily implies that

s = 1 +
2πin

log(2)
= 1 +

2πim

log(3)

which would give 2m = 3n, hence n = m = 0. Therefore s = 1 is the only
singularity.

We will finally show that the pole at s = 1 has the claimed properties: from the
graph of 1/xσ we can read that for σ > 1 we have

1

σ − 1
=

∫ ∞
1

dx

xσ
≤
∑
n≥1

1

nσ
= ζ(σ) ≤ 1 +

∫ ∞
1

dx

xσ
= 1 +

1

σ − 1

so we have 1 ≤ (σ − 1)ζ(σ) ≤ σ and

(3) lim
σ→1

(σ − 1)ζ(σ) = 1

If now ζ(s) =
∑+∞
−∞ an(s−1)n is the Laurent development around 1, we get from

(3) that an = 0 for n ≤ −2 (simple pole) and a−1 = 1 (residue) �

Riemann [4, VII, p. 147] makes use of the Γ–function to exhibit the analytical
continuation of ζ to all of C and exposing its functional equation at the same time.

Theorem 2.2 (functional equation).

Γ
(s

2

)
π−

s
2 ζ(s) = Γ

(1− s
2

)
π−

1−s
2 ζ(1− s)

Proof. We follow the reasoning of Riemann. He starts with
1

ns
Γ
(s

2

)
π−

s
2 =

∫ ∞
0

e−n
2πxx

s
2−1dx

and introducing the theta series2

ψ(x) =

∞∑
1

e−n
2πx

summing up gives

ζ(s)Γ
(s

2

)
π−

s
2 =

∫ ∞
0

ψ(x)x
s
2−1dx

2remark that 2ψ(x) + 1 = ϑ(0, xi), see [5]
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The function g(t) = exp(−t2πx) has the Fourier transform ĝ(t) = x−
1
2 exp(−t2π/x).

The Poisson formula ∑
g(n) =

∑
ĝ(n)

implies the theta functional equation

2ψ(x) + 1 = x−
1
2 (2ψ(1/x) + 1).

Splitting the integral into
∫∞
1

+
∫ 1

0
and substituting this functional equation into

the second integral he finally obtains

ζ(s)Γ
(s

2

)
π−

s
2 =

∫ ∞
1

ψ(x)x
s
2−1dx+

∫ 1

0

ψ(1/x)x
s−3
2 dx+

+
1

2

∫ 1

0

(
x

s−3
2 − x s

2−1
)
dx =

=
1

s− 1
− 1

s
+

∫ ∞
1

ψ(x)
(
x

s
2−1 + x−

1+s
2

)
dx

which is invariant under s 7→ 1− s. �

See the appendix for another approach to analytical continuation.

3. Bernoulli numbers

See [1, V §8] p. 408, [6, VII §4] p. 147.

The numbers Bn defined in the development of the power series

(4)
x

ex − 1
= 1 +

∑
n≥1

Bn
n!
xn

are called Bernoulli–numbers. They are rational, as can be seen from the recur-
sion formula (6) below.

For a polynomial
f(x) = a0 + a1x+ · · ·+ anx

n

we will write symbolically

f(B) = a0 + a1B1 + · · ·+ anBn

and similarly for power series. With this convention (4) can be re–written

(5) eBx =
x

ex − 1

You see immediately by multiplying the power series that

eax · eBx = e(a+B)x

Theorem 3.1 (recursion formula for Bernoulli numbers).

(6) (1 +B)n −Bn = 0 n ≥ 2.

Proof. From (5) it follows that

x = ex · eBx − eBx = e(1+B)x − eBx

and you get the result by comparing the coefficients on both sides ! �
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In particular (6) yields for n = 2: B1 = − 1
2 . As is easy to see, the function

x

ex − 1
+
x

2
= 1 +

∑
n≥2

Bn
xn

n!

is even, therefore B2n+1 = 0 (n ≥ 1). This is the reason why sometimes only the
even Bernoulli numbers are numerated. You find a table with the first 12 resp.
14 even Bernoulli numbers in Borewicz–Šafarevič [1] resp. Serre [6] (the
latter denotes our number B2n by (−1)n+1Bn).

Theorem 3.2. [1, V §8 Satz 6]

(7) ζ(2m) = (−1)m−1
(2π)2m

2 · (2m)!
B2m m ≥ 1

Proof. A simple rearrangement of [2, V §2.3 (3.2)] p. 155 gives

cot z =
1

z
+
∑
n≥1

2z

z2 − (πn)2

As

cot z =
cos z

sin z
= i

eiz + e−iz

eiz − e−iz
= i+

2i

e2iz − 1
replacing x = 2iz gives

(8)
x

ex − 1
= eBx = 1− x

2
+
∑
n≥1

2x2

x2 + (2πn)2

Now we have
x2

x2 + (2πn)2
=
∑
m≥1

(−1)m−1
( x

2πn

)2m
we put this into (8) and sum up over the n to obtain

eBx = 1− x

2
+
∑
m≥1

(−1)m−1
2 · ζ(2m)

(2π)2m
x2m

and by comparison of coefficients this yields (7). �

The values of ζ(2n+ 1) are unknown. In 1978 Apéry proved ζ(3) /∈ Q.

Special values for n ∈ N, n > 0 are:

ζ(−2n) = 0 (‘trivial’ zeros)
ζ(1− 2n) = −B2n/2n ∈ Q (rational values)

All non–trivial zeros are in the critical strip 0 ≤ σ ≤ 1. Riemann found it most
likely that they all lie on the critical line σ = 1

2 (Riemann conjecture). This is
known to be true for ℵ0 zeros, but only some millions of them have explicitely been
calculated.

Appendix A. Analytical continuation of the ζ–function

Let

fk,n(s) =

∫ 1

0

tk

(n+ t)s+k
dt for k ≥ 0, n ≥ 1

These functions are holomorphic everywhere in C: as obviously

f0,n(s) =
1

s− 1

( 1

ns−1
− 1

(n+ 1)s−1

)



ζ–FUNCTION AND BERNOULLI NUMBERS 7

is holomorphic in C, and we have

fk,n(s) =

∫ n+1

n

(t− n)k

ts+k
dt =

k∑
i=0

(
k

i

)
(−n)if0,n(s+ i)

Since |fk,n(s)| ≤
1

nσ+k
, the sum

fk(s) =

∞∑
n=1

fk,n(s)

converges for σ > 1−k and is holomorphic in this half plane. In particular f0(s) =
1

s− 1
.

The function
1

k + 1
· tk+1

(n+ t)s+k
has the derivative (in t):

tk

(n+ t)s+k
− s+ k

k + 1
· tk+1

(n+ t)s+k+1

and by integration from 0 to 1 we get

fk,n(s)−
s+ k

k + 1
fk+1,n(s) =

1

k + 1
· 1

(n+ 1)s+k

and the summation from 1 to ∞ gives in the half plane σ > 1− k

fk(s)−
s+ k

k + 1
fk+1(s) =

1

k + 1

(
ζ(s+ k)− 1

)
which implies by induction the formula valid for σ > 1:

1 +
1

s− 1
− ζ(s) =

k∑
i=1

(
s+ i− 1

i

)
1

i+ 1

(
ζ(s+ i)− 1

)
+

(
s+ k

k + 1

)
fk+1(s)

From this we conclude successively (k = 0, 1, 2, . . . ) the holomorphy of the function on the
left hand side in the whole s–plane.
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