ARTIN'S L-FUNCTIONS AFTER WEIL, GROTHENDIECK

BERNDT E. SCHWERDTFEGER

To Jo on his $3F^{th}$ birthday.

Preface

This paper summarizes some notes taken when comparing WEIL's presentation of ARTIN'S *L*-functions in [4] with GROTHENDIECK'S in [1].

Berlin, November 15, 2011

1. Artin L-functions according to Weil

1.1. **DIRICHLET-series.** In general we will use the notation of WEIL in [5, VII] and [4, II]. We recap some basic notation.

Let k denote a global field, i.e. either an algebraic number-field (a finite field extension k/\mathbb{Q}) or an algebraic function-field of dimension 1 over a finite field of constants. For each place v of k its completion is denoted k_v . For finite places the local ring of integers is \mathfrak{o}_v and its maximal ideal \mathfrak{p}_v .

The free abelian group of all \mathfrak{p}_v is called group of *divisors* and is denoted \mathfrak{M} ; it is written *multiplicatively*. A divisor $\mathfrak{m} \in \mathfrak{M}$ is *positive* if the exponents of all \mathfrak{p}_v are positive. The positive divisors form the semigroup \mathfrak{M}_+ . In characteristic 0 (number-fields) \mathfrak{M} corresponds to the group of fractional ideals of k and \mathfrak{M}_+ to the ideals $\neq 0$ in the ring of integers \mathfrak{o}_k of k. In characteristic > 1 (function-fields) \mathfrak{M} corresponds to the *line bundles* on the associated complete curve – this aspect will not be delved into in this article. As we want to compare WEIL's treatment of ARTIN'S *L*-functions with GROTHENDIECK's we are particularly interested in the *function-field* case.

Let $\Omega_k = \text{Hom}(\mathbf{A}_k^{\times}/k^{\times}, \mathbb{C}^{\times})$ be the group of (not necessarily unitary) characters on the idele class group of k. WEIL attaches to a function $c : \mathfrak{M}_+ \longrightarrow \mathbb{C}$ an *extended* DIRICHLET-series belonging to k by

$$L(c,\omega) = \sum_{\mathfrak{m}\in\mathfrak{M}_+} c(\mathfrak{m})\omega(\mathfrak{m})$$

This series is absolutely convergent for $\operatorname{Re} \omega > \alpha + 1$ if and only if $|c(\mathfrak{m})| \leq C|\mathfrak{m}|^{-\alpha}$ for some C > 0 and some $\alpha \in \mathfrak{R}$.

The coefficients $c(\mathfrak{m})$ are uniquely determined by the function $L(c, \omega)$.

version 1.0.506, March 4, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 11M41; Secondary 11R42.

Key words and phrases. Artin-, Hecke L-functions, Dirichlet-series, Weil groups, Galois representations, inertia, decomposition group.

^{© 2011–2015} Berndt E. Schwerdtfeger

1.2. ARTIN-HECKE L-series. Let W_k be the WEIL group of k. The quotient by its derived group W_k/W'_k is canonically isomorphic to the idele-class group $\mathbf{A}_k^{\times}/k^{\times}$ by class field theory, let $\alpha_k : \mathbf{A}_k^{\times}/k^{\times} \xrightarrow{\sim} W_k/W'_k$ denote the ARTIN reciprocity map. So, we can also identify the characters $\omega \in \Omega_k$ on the idele-class group with the abelian characters $\chi : W_k/W'_k \longrightarrow \mathbb{C}^{\times}$ (representations of degree 1).

Let X_k be the ring of representations of W_k (the WEIL group). If k'/k is a separable extension of degree d, then $W_{k'}$ is of index d in W_k and we can induce representations from $W_{k'}$ to W_k , denoted $\chi' \mapsto [\chi'; k'/k]$, and considered as a mapping $X_{k'} \longrightarrow X_k$.

To each finite separable extension k'/k and to every character $\chi' \in X_{k'}$ there is attached a divisor $f_{k'}(\chi')$ of k' and an extended DIRICHLET series $L_{k'}(\chi')$ satisfying the following properties ([4, §73])

- (1) For deg $\chi' = 1$ the divisor $f_{k'}(\chi') = f(\omega')$ is the conductor of $\omega' = \chi' \circ \alpha_{k'}$ and the *L*-series is the usual HECKE series to the Größencharakter ω' as in WEIL [5, VII] $L_{k'}(\chi') = L(\omega')$.
- (2) The mappings $\chi' \mapsto f_{k'}(\chi')$ and $\chi' \mapsto L_{k'}(\chi')$ are homomorphisms of the additive group $X_{k'}$ into the multiplicative groups of the divisors $\mathfrak{M}_{k'}$ of k', and of the DIRICHLET series belonging to k' with initial coefficient 1, respectively.
- (3) For k''/k'/k let D(k''/k') be the discriminant of k'' over k', let χ'' be any character of $W_{k''}$ of degree $n = \deg \chi''$. Then

$$f_{k'}([\chi'';k''/k']) = \mathcal{N}_{k''/k'}(f_{k''}(\chi''))D(k''/k')^n$$
$$L_{k'}([\chi'';k''/k']) = [L_{k''}(\chi'');k''/k']$$

From these properties it is clear that these conditions determine the L-series for all characters.

For function fields WEIL has proven the ARTIN conjecture that these *L*-functions are holomorph for positive characters $\chi \neq 1$ ([2, II^e partie, §V, n^o 27-28]).

2. Artin L-functions according to Grothendieck

2.1. **Definition of** Z- and L-functions. In [1], following WEIL [3, p. 507], GROTHENDIECK discussed the Z- and L-functions for a scheme Y of finite type over a finite field \mathbb{F}_q . Let the finite group G operate on the right such that X = Y/Gexists, let $\rho: G \longrightarrow GL(V)$ be a representation in a finite dimensional vector space over a field F of characteristic 0 (classically $F = \mathbb{C}$, but we might also take $F = \mathbb{Q}_{\ell}$ or $F = \mathbb{C}_{\ell}$).

The ARTIN L-function is defined by

$$L(Y, G, X, t) = L(Y/X, \rho, t) = \prod_{x \in X^0} \frac{1}{\det(1 - \rho^{\natural}(x)t^{d(x)})}$$

where X^0 = set of *closed* points of X, $d(x) = \deg x = [\kappa(x) : \mathbb{F}_q]$ is the residual degree and

$$\rho^{\natural}(x) = \frac{1}{|T_y|} \sum_{\substack{s \in G_y \\ s \to \varphi_y}} \rho(s) \in \operatorname{End}(V)$$

where $y \to x$ for a point y in the fiber Y_x , with G_y the decomposition group, T_y is the inertia group $(e(y/x) = |T_y| = e(x)$ is independent of y/x) and $\varphi_y \in G_y/T_y \simeq G(\kappa(y)/\kappa(x))$ is the FROBENIUS in the GALOIS group of the residual extension. We have

$$\log L(Y/X, \rho, t) = \sum_{\nu \ge 1} c_{\nu}(Y, G, \rho) t^{\nu} / \nu$$
$$c_{\nu}(Y, G, \rho) = \sum_{x \in X(\mathbb{F}_{q^{\nu}})} Tr_{\rho}^{\natural}(\varphi_x)$$

where

$$Tr_{\rho}^{\natural}(\varphi_x) = \frac{1}{|T_y|} \sum_{\substack{s \in G_y \\ s \to \varphi_x}} Tr_{\rho}(s)$$

where $y \in Y(\mathbb{F}_{q^{\nu}})$ is above the point $x \in X(\mathbb{F}_{q^{\nu}})$ and φ_x is the FROBENIUS.

References

- Alexander Grothendieck, Formule de Lefschetz et rationalité des fonctions L, Sém. Bourbaki 279 (1964/65), 1–15.
- [2] André Weil, Courbes algébriques et variétés abéliennes, Hermann, Paris, 1948. réimp. 1971.
- [3] _____, Numbers of solutions of equations in finite fields, Bull. Am. Math. Soc. 55 (1949), 497-508, available at http://berndt-schwerdtfeger.de/wp-content/uploads/pdf/nf.pdf.
- [4] _____, Dirichlet Series and Automorphic Forms, Lecture Notes in Math., vol. 189, Springer, Berlin, 1971.
- [5] _____, Basic Number Theory, Classics in Mathematics, Springer, Berlin, Heidelberg, New York, 1973, 1995.