
ÉTALE MORPHISMS IN TOPOLOGY

BERNDT E. SCHWERDTFEGER

Abstract. This paper discusses the following types of continuous maps in
Topology: étale, separated, proper and covering morphisms, and investigates
their relationship. The Galois theory for finite coverings is discussed in more
detail.

Preface

The subject of this note are étale morphisms in topology, as they are encountered in the
theory of unramified coverings. It goes back to classes of Giraud [2] and Verdier [6]. A
previous version had been published earlier [5].

Berlin, December 9, 2007 B. E. Schwerdtfeger

1. Terms that play a role

We will move in the category of topological spaces. We will not define those, but
assume the reader to have a basic knowledge. The neighbourhood filter of a point
x ∈ X is denoted by V(x) (see Bourbaki [1]).

Definition 1.1. A morphism f : Y → X is called étale if

∀ y ∈ Y ∃V ∈ V(y) with U = f(V ) ∈ V(f(y)) and f |V : V
∼−→ U is homeomorph.

Definition 1.2. A morphism f : Y → X is called separated if

∀ y1 6= y2 with f(y1) = f(y2) ∃V1 ∈ V(y1), V2 ∈ V(y2) with V1 ∩ V2 = ∅

Definition 1.3. A morphism f : Y → X is called proper if f is closed with
quasi–compact fibers f−1(x) ⊂ Y , x ∈ X.

Definition 1.4. A morphism f : Y → X is called a covering if ∀x ∈ X the fiber
f−1(x) is discrete and there exists a neighbourhood U of x and a homeomorphism
h with

h : f−1(U)
∼ //

f

��

U × f−1(x)

p1

ww
U

where the fiber f−1(x) over x is mapped to {x}× f−1(x), i.e. you can assume that
h(y) = (f(y), y) = (x, y) for y ∈ f−1(x).
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Otherwise put, a covering is a locally trivial bundle with a discrete fiber.

In an equivalent description you have

f−1(U) =
⋃

y∈f−1(x)

Vy disjoint, Vy ∈ V(y) and f |Vy
∼−→ U

In particular, a covering is separated and étale.

In the sequel we will investigate the functorial behaviour of the above classes of
morphisms in these situations:

base change: given a map f : Y → X and an arbitrary base change X1
ϕ−→X

Y

f

��

Y1oo

f1

��
X X1ϕ
oo

with Y1 = Y ×
X
X1, is the property preserved for f1 ?

composition: given two maps f : Y → X and g : Z → Y , is the property
preserved for h = f ◦ g : Z → X ?

2. Étale morphisms

Proposition 2.1. Étale maps are stable under base change:

Y

f

��

Y1
ψoo

f1

��
X X1ϕ
oo

where Y1 = Y ×
X
X1. If f is étale, then f1 is étale.

Let Z g−→Y f−→X,h = f ◦ g. If two of the maps f, g, h are étale, the third is étale
as well.

Proof. Let us prove stability under base change: pick y1 ∈ Y1, let y = ψ(y1) and
x1 = f1(y1), such that y1 = (y, x1) with f(y) = ϕ(x1) = x. As f is étale there is
V ∈ V(y) such that U = f(V ) ∈ V(x) satisfies f |V : V

∼−→ U . Set V1 = ψ−1(V )

and U1 = ϕ−1(U) then I claim that f1|V1 : V1
∼−→ U1. But since V1 = V ×

U
U1 and

f1(v, u1) = u1 this is obvious.

Let us prove the second assertion: it is clear that the composition of étale maps is
étale, we are in a local situation like

W
∼ //

_�

��

V
∼ //

_�

��

U_�

��
Z

g //

h

33Y
f // X

and f, g étale =⇒ h étale, and f, h étale =⇒ g étale, and g, h étale =⇒ f étale. �

Obviously, étale mappings f : Y −→ X are open, as this is a local property. But
this also holds for their sections:
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Lemma 2.2. Let U ⊂ X be open, s : U −→ Y be a section of f , i.e. f ◦ s = idU .
Then V = s(U) ⊂ Y is open.

Proof. Take a y ∈ V , we will show V ∈ V(y). Say y = s(x) for x ∈ U , hence
f(y) = x. Let W ∈ V(y) be such that f |W : W

∼−→ f(W ) ⊂ U and consider
f−1s−1W ∩ W ∈ V(y). For z ∈ W ∩ f−1s−1W we have f(s ◦ f(z)) = f(z),
which implies s ◦ f(z) = z ∈ s(U) = V , therefore W ∩ f−1s−1W ⊂ V and V is a
neighbourhood of y. �

Lemma 2.3. Let U ⊂ X be open, s, t : U −→ Y sections with s(x) = t(x) at one
point x ∈ U . Then ∃ a neighbourhood U1 of x such that s|U1 = t|U1.

Y

f

��
X U?

_oo
s

``
t

``

Proof. s(U) ∩ t(U) is an open neighbourhood of s(x) = t(x). If y ∈ s(U) ∩ t(U),
then y = s(f(y)) = t(f(y)), therefore s|U1 = t|U1 for U1 := f(s(U) ∩ t(U)). �

Corollary 2.4. Let f : Y → X be étale, h : Z → X arbitrary, σ, τ : Z → Y
morphisms /X (i.e. f ◦ σ = f ◦ τ) with σ(z) = τ(z) at one point z ∈ Z. Then
∃W ∈ V(z) such that σ|W = τ |W .

Proof. Define sections s, t : Z → Z ×
X
Y , s(z) = (z, σ(z)), t(z) = (z, τ(z)). �

Remark. The category of étale spaces over X is equivalent to the category of sheaves
on X, see Godement [3, II, §1.2] L’espace étalé attaché à un faisceau; this category is
the basic example of a topos Top(X), see SGA 4 [4, IV, 2.1] Topos associé à un espace
topologique. To an étale mapping f : F −→ X under this equivalence is associated the
sheaf of sections F defined by F(U) := Γ(U,F ) = {s : U → F | f ◦ s = idU}. The fiber
over x is discrete and by Lemma 2.3 isomorphic to the stalk of the sheaf

f−1(x) = Fx
∼−→ Fx = lim−→

U∈V(x)

F(U)

by sending a y ∈ Fx to the germ of the section (f |V )−1, V ∈ V(y) suitably chosen. The
reverse is done by mapping the germ sx ∈ Fx to the value s(x) ∈ Fx.

3. Separated morphisms

Proposition 3.1. Separated maps are stable under base change:

Y

f

��

Y1oo

f1

��
X X1ϕ
oo

where Y1 = Y ×
X
X1. If f is separated, then f1 is separated.

In a diagram Z
g−→Y f−→X : f, g separated =⇒ f ◦ g separated =⇒ g separated.

Proof. f separated is equivalent to the diagonal ∆Y ⊂ Y ×
X
Y is closed. For the

canonical map ψ : Y1 ×
X1

Y1 −→ Y ×
X
Y we have ψ−1(∆Y ) = ∆Y1

. The last assertions

follow from the definitions. �
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Proposition 3.2. A section s of a separated morphism

f : Y // X
srr

is a closed embedding.

Proof. For embedding holds for any section and closed follows from s(X) = t−1(∆Y ),
where t is the section on Y pulled back from s: t(y) = (s ◦ f(y), y)

Y

f

��

Y ×X Y

��

oo

X

s

HH

Y

t

UU

f
oo

�

Lemma 3.3. Let f : Y → X be étale and separated, Z connected and h : Z → X
arbitrary. Then ∀ z ∈ Z the maps

HomX(Z, Y ) −→ f−1(h(z))

σ 7−→ σ(z)

are injective.

Proof. Let σ, τ ∈ HomX(Z, Y ) and define g : Z → Y ×X Y by g(z) := (σ(z), τ(z)).
g−1(∆Y ) is closed and open (Cor. 2.4), hence g−1(∆Y ) = Z if 6= ∅, i.e. σ = τ . �

4. Proper morphisms

Lemma 4.1. Let f : Y → X be proper, then it is quasi–compact: ∀K ⊂ X
quasi–compact =⇒ f−1(K) ⊂ Y is quasi–compact.

Proof. Start with a family of open sets (Vα)α such that f−1(K) ⊂
⋃
α Vα =: V .

For any finite index subset I define VI :=
⋃
α∈I Vα and UI := X − f(Y − VI),

U := X − f(Y − V ). Obviously K ⊂ U , UI ⊂ U .

Now, for u ∈ U we have f−1(u) ⊂ V , and by quasi–compactness of the fibers there
exists I such that f−1(u) ⊂ VI , that is u ∈ UI and thus K ⊂

⋃
I UI . By quasi–

compactness of K we can find finitely many I, that is there is an I with K ⊂ UI .
This implies f−1(K) ⊂ VI . �

Proposition 4.2. Proper maps are stable under base change:

Y

f

��

Y1oo

f1

��
X X1ϕ
oo

where Y1 = Y ×
X
X1.

If f is proper, then f1 is proper.

Proof. For x1 ∈ X1 the fiber f−11 (x1) = f−1(ϕ(x1))× {x1} is quasi–compact.

To show that f1 is closed let A ⊂ Y1 be closed and let us show that X1 − f1(A)
is open. Consider a point x1 ∈ X1 − f1(A). For any y ∈ f−1(ϕ(x1)) we have
(y, x1) ∈ Y1 − A, therefore there are neighbourhoods V of y and U1 of x1 with
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V × U1 ∩ A = ∅. As the fiber is quasi-compact a finite number of the V cover
the fiber. Replace V with this finite union and U1 with the corresponding finite
intersection: we have found an open V ⊃ f−1(ϕ(x1)) and and U1 3 x1 with
V ×U1 ∩A = ∅. Set U := X − f(Y − V ), then ϕ(x1) ∈ U and U is open in X, by
continuity of ϕ and eventually restricting U1 further we may assume ϕ(U1) ⊂ U .
This implies f−1ϕ(U1) ⊂ V and from this we get x1 ∈ U1 ⊂ X1 − f1(A). �

Proposition 4.3. In a diagram Z
g−→Y f−→X we have

f, g are proper =⇒ f ◦ g is proper(1)
f ◦ g is proper, g surjective =⇒ f is proper(2)
f ◦ g is proper, f separated =⇒ g is proper(3)

Proof. (1) is clear by the lemma 4.1.

(2) Let h = f ◦ g.

∀B ⊂ Y is f(B) = h(g−1(B)), hence f closed.

∀x ∈ X is f−1(x) = g(h−1(x)), hence f quasi–compact.

(3) Apply base change: Z ′ = Z ×
X
Y , consider

Z

h

��

s
55 Z ′

h1

��

poo

X Y
f
oo

h1 is proper by base change (Prop. 4.2), the section s is defined by s(z) := (z, g(z)).
Now, p is separated as a base change of f (Prop. 3.1), hence the section s is a closed
embedding (Prop. 3.2), in particular it is proper. It follows by (1) that g = h1 ◦ s
is proper. �

5. Finite coverings

Definition 5.1. If all fibers of a covering f : Y → X are finite, then the map
X → N, x 7→ #f−1(x) is locally constant onX and f is called locally finite covering .
It is called (globally) finite, if all fibers have the same number n of points, which is
called its degree : deg f = n = #f−1(x), ∀x ∈ X.

Proposition 5.1. A separated étale morphism f : Y → X such that x 7→ #f−1(x)
is locally constant, is a locally finite covering.

Proof. Without loss of generality assume n = #f−1(x) ∀x ∈ X (restricting to
such a neighbourhood). f−1(x) = {y1, . . . , yn}. There are open neighbourhoods
V1, . . . , Vn of y1, . . . , yn, pairwise disjoint, with f |Vi is homeomorph to its image.
Define U :=

⋂
i f(Vi), then with Wi := f−1(U) ∩ Vi we have f(Wi) = U and

f−1(U) =
⋃
iWi disjoint. �

Theorem 5.2. f : Y → X is a locally finite covering if and only if f is étale,
separated and proper.

Proof. “⇒” It remains to show ‘proper’. The fibers are finite, so they are quasi–
compact. Let us show ‘closed’. Obviously X − f(Y ) is open, hence f(Y ) closed
(and open), so that we may assume X = f(Y ). Let B ⊂ Y be closed, x /∈ f(B),
say U a neighbourhood of x with f−1(U) = V1

.
∪· · ·

.
∪Vn, f |Vi : Vi

∼−→ U , and since
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f−1(x) ⊂ Y −B we can assume (eventually shrinking Vi) that Vi ⊂ Y −B. Hence
f−1(U) ⊂ Y −B, that is U ∩ f(B) = ∅ and X − f(B) is open.

“⇐” Let f be étale, separated and proper. x ∈ X, the fiber f−1(x) is discrete and
quasi–compact, therefore finite, say f−1(x) = {y1, . . . , yn}.

As X − f(Y ) is open, we can assume x ∈ f(Y ), that is n ≥ 1. There are pairwise
disjoint open sets W1, . . . ,Wn with yi ∈Wi and f |Wi : Wi

∼−→ f(Wi). Set

U := f(W1) ∩ · · · ∩ f(Wn) ∩ (f(Y )− f(Y − (W1 ∪ · · · ∪Wn)))

U is an open neighbourhood of x. With Vi := f−1(U) ∩Wi is by construction

f−1(U) = V1
.
∪ · · ·

.
∪ Vn and f |Vi : Vi

∼−→ U

�

This implies good functorial properties through the propositions 2.1, 3.1, 4.2, 4.3.

Corollary 5.3. Stability under base change:

Y

f

��

Y1oo

f1

��
X X1
oo

where Y1 = Y ×
X
X1.

If f is locally finite covering, then f1 is locally finite covering. A finite covering is
stable under base change.

In a diagram Z
g−→Y f−→X,h = f ◦ g we have

f, g are locally finite coverings =⇒ h is locally finite covering.
f, h are locally finite coverings =⇒ g is locally finite covering.

g, h are locally finite coverings with surjective g =⇒ f is locally finite covering.

From the formula
#h−1(x) =

∑
y∈f−1(x)

#g−1(y)

we also deduce that

f, g are finite coverings =⇒ h is a finite covering.
g, h are finite coverings with surjective g =⇒ f is a finite covering.

Note. g need not be finite, if f and h are finite, e.g. if Z and Y are not connected.

Lemma 5.4. Let f : Y → X and h : Z → X be finite coverings over a connected
space X and let g : Z → Y be an X-morphism f ◦ g = h.

For x ∈ X let gx : h−1(x) → f−1(x) be the fiber map. If one of them is bijective,
then all are and g is a homeomorphism.

Proof. According to Cor. 5.3 g is a locally finite covering. If we had Y − g(Z) 6= ∅
then this open and closed set would imply f(Y − g(Z)) = X and a y ∈ Y − g(Z)
with f(y) = x would contradict the surjectivity of gx. Therefore we have g(Z) = Y
and for all y ∈ Y we must have #g−1(y) ≥ 1. Now for x′ ∈ X we get deg h =∑
y∈f−1(x′) #g−1(y) ≥ #f−1(x′) = deg f = deg h, thus ∀y ∈ Y #g−1(y) = 1. �
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Lemma 5.5. Let X be connected, f : Y −→ X a finite covering.

Then we have Y = Z1

.
∪· · ·

.
∪Zr where Zi are the non–empty connected components

of Y , and fi : Zi −→ X, fi = f |Zi, are surjective finite coverings.

Proof. Without restriction assume Y 6= ∅ (otherwise r = 0). Consider the open
and closed subsets ∅ 6= Z ⊂ Y . f(Z) = X, as X is connected and Z −→ X is
a finite covering. If Z ′ ⊂ Z and Z ′ ∩ f−1(x) = Z ∩ f−1(x), then Z ′ = Z by the
previous Lemma. There are minimal Z 6= ∅ and these must be connected. This
signifies the finite many minimal Z’s are the connected components of Y – and all
is done. �

6. Galois coverings

Definition 6.1. A finite covering f : Y −→ X of connected spaces is called Galois1

with group G = G(Y/X) := Aut(Y/X), if one of the following equivalent conditions
is satisfied:

∃ y ∈ Y ey : G −→ f−1(f(y)) is bijective(1)
σ 7−→ σ(y)

∀ y ∈ Y ey : G −→ f−1(f(y)) is bijective(2)

e : G× Y ∼−→ Y ×
X
Y(3)

(σ, y) 7−→ (σ(y), y)

Proof. (of equivalence) (3) ⇒ (2) ⇒ (1) is evident. If (1) holds, apply Lemma 5.4
to the diagram (3) /Y . �

Theorem 6.1. Let f : Y −→ X be a finite covering of connected spaces 6= ∅. Then
there exists a finite Galois covering h : Z −→ X such that

e : Z ×HomX(Z, Y )
∼−→ Z ×

X
Y /Z

(z, g) 7−→ (z, g(z))

and any T → X with this property, i.e.

T ×HomX(T, Y )
∼−→ T ×

X
Y

factors thru Z: T −→ Z
h−→X.

Proof. Let x ∈ X and f−1(x) = {y1, . . . , yn}, n = deg f . Choose

Z ⊂ (Y/X)n := Y ×
X
· · · ×

X
Y

pi−→Y

to be the connected component of (y1, . . . , yn) and h : Z −→ X canonical.

By Lemma 3.3 e is injective, but the fiber over (y1, . . . , yn) ∈ Z is mapped sur-
jectively onto f−1(x): HomX(Z, Y )

∼−→ f−1(x), as pi ∈ HomX(Z, Y ), hence e is
bijective by Lemma 5.4.

It remains to be shown that Z/X is Galois. Let z ∈ h−1(x), we have pi(z) ∈
f−1(x), so pi(z) = yσ(i) for some permutation σ ∈ Sn. Interpret σ as a morphism
σ : (Y/X)n −→ (Y/X)n. Since Z ∩ σ(Z) 6= ∅ we must have Z = σ(Z), and thus
σ ∈ G(Z/X) with σ(y1, . . . , yn) = z and

e(y1,...,yn) : G(Z/X)
∼−→ h−1(x)

1also normal
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is bijective.

The assertion for T follows at once, since

T −→ (Y/X)n

t 7−→ (α1(t), . . . , αn(t))

has image Z, if HomX(T, Y ) = {α1, . . . , αn} has been suitably numbered. �

Lemma 6.2. Let f : Y −→ X be Galois, then G(Y/X) operates simply transitive
on HomX(Z, Y ) for any h : Z −→ X.

Proof. Without restriction assume HomX(Z, Y ) 6= ∅, let g : Z −→ Y be such that
f ◦ g = h. Let z ∈ Z, y = g(z), x = f(y) = h(z) and consider

G(Y/X) ↪→ HomX(Z, Y ) ↪→ f−1(x)
ρ 7−→ ρ ◦ g 7−→ ρ(y)

The injectivity of these mappings follows from Lemma 3.3, the surjectivity of the
composed mapping implies G(Y/X)

∼−→ HomX(Z, Y ). �

Theorem 6.3. In the situation h : Z
g−→Y f−→X let Z/X be Galois. Then Z/Y

is Galois, and Y/X is Galois exactly if G(Z/Y ) C G(Z/X) is a normal subgroup.
Moreover G(Z/X) operates transitively on HomX(Z, Y ). In the Galois case we
have canonically

G(Y/X)
∼−→ HomX(Z, Y )

∼−→ G(Z/X)/G(Z/Y )

Proof. Let z ∈ Z, y = g(z), x = f(y) and consider the diagram

G(Z/X)
∼ // h−1(x) τ 7→ τ(z)

G(Z/Y )
?�

OO

� � // g−1(y)
?�

OO

If τ(z) ∈ g−1(y), then we have g ◦ τ(z) = g(z), hence by Lemma 3.3 g ◦ τ = g,
i.e. τ ∈ G(Z/Y ) and therefore Z/Y is Galois. Furthermore the isotropy group of
g ∈ HomX(Z, Y ) in G(Z/X) is exactly G(Z/Y ), so

G(Z/Y )\G(Z/X) �
� // HomX(Z, Y )

Now, the set on the right has at most deg f = deg Y/X elements (Lemma 3.3)
and the set on the left has exactly deg h/deg g = deg f elements, which implies
HomX(Z, Y ) = {g ◦ τ | τ ∈ G(Z/X)}.

Now let us investigate the case Y/X Galois: then by Lemma 6.2 G(Y/X)
∼−→

HomX(Z, Y ), ρ 7→ ρ ◦ g is bijective. This gives us a canonical mapping

G(Z/X) −→ G(Y/X)
τ 7−→ ρ where ρ ◦ g = g ◦ τ

and we see immediately that this is a homomorphism. The kernel G(Z/Y ) is
therefore a normal subgroup.

Now let G(Y/X) be a normal subgroup and let us show that Y/X is Galois, that is
#G(Y/X) = deg f . Let τ ∈ G(Z/X), y ∈ Y be given. For any two z, z′ ∈ g−1(y)
there is σ ∈ G(Z/Y ) with z′ = σ(z). By assumption τστ−1 ∈ G(Z/Y ), hence
g ◦ τσ = g ◦ τ , and g(τ(z′)) = g(τ(z)) and g ◦ τ is constant on the fiber, so that
the definition ρ(y) := g(τ(z)), for any z ∈ g−1(y) is meaningful. This shows the
surjectivity of G(Y/X) −→ HomX(Z, Y ). �
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Now let a connected space Y 6= ∅ be given with a finite group G < Aut(Y )
of homeomorphisms. Let X := G\Y be the orbit space, the quotient mapping
f : Y −→ X is open and proper. Furthermore f is separated exactly if

∀ y ∈ Y ∃V ∈ V(y) such that ∀σ ∈ G−Gy V ∩ σ(V ) = ∅
Under this condition G is said to operate on Y discontinuously .

For f to be étale it is necessary and sufficient that the operation be fixpoint free.
We conclude:

Theorem 6.4. Let G ⊂ Aut(Y ) be a finite group, which operates discontinuously
and without fixpoints on a connected space Y 6= ∅, let X := G\Y . Then Y is a
Galois covering of X with Galois group G(Y/X) = G.
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