# ÉTALE MORPHISMS IN TOPOLOGY

#### BERNDT E. SCHWERDTFEGER

ABSTRACT. This paper discusses the following types of continuous maps in Topology: étale, separated, proper and covering morphisms, and investigates their relationship. The Galois theory for finite coverings is discussed in more detail.

#### Preface

The subject of this note are *étale morphisms* in topology, as they are encountered in the theory of *unramified coverings*. It goes back to classes of GIRAUD [2] and VERDIER [6]. A previous version had been published earlier [5].

Berlin, December 9, 2007

B. E. Schwerdtfeger

#### 1. Terms that play a role

We will move in the category of topological spaces. We will not define those, but assume the reader to have a basic knowledge. The neighbourhood filter of a point  $x \in X$  is denoted by  $\mathfrak{V}(x)$  (see BOURBAKI [1]).

**Definition 1.1.** A morphism  $f: Y \to X$  is called *étale* if

 $\forall y \in Y \; \exists V \in \mathfrak{V}(y) \text{ with } U = f(V) \in \mathfrak{V}(f(y)) \text{ and } f|V:V \xrightarrow{\sim} U \text{ is homeomorph.}$ 

**Definition 1.2.** A morphism  $f: Y \to X$  is called *separated* if

$$\forall y_1 \neq y_2 \text{ with } f(y_1) = f(y_2) \exists V_1 \in \mathfrak{V}(y_1), V_2 \in \mathfrak{V}(y_2) \text{ with } V_1 \cap V_2 = \emptyset$$

**Definition 1.3.** A morphism  $f: Y \to X$  is called *proper* if f is *closed* with *quasi-compact* fibers  $f^{-1}(x) \subset Y$ ,  $x \in X$ .

**Definition 1.4.** A morphism  $f: Y \to X$  is called a *covering* if  $\forall x \in X$  the fiber  $f^{-1}(x)$  is *discrete* and there exists a neighbourhood U of x and a homeomorphism h with

where the fiber  $f^{-1}(x)$  over x is mapped to  $\{x\} \times f^{-1}(x)$ , i.e. you can assume that h(y) = (f(y), y) = (x, y) for  $y \in f^{-1}(x)$ .

<sup>2010</sup> Mathematics Subject Classification. Primary 57M10; Secondary 57S30.

Key words and phrases. étale, separated, proper, Galois covering.

<sup>© 1998–2016</sup> Berndt E. Schwerdtfeger

version 1.1, rev. 591, March 28, 2016.

Otherwise put, a covering is a locally trivial bundle with a discrete fiber.

In an equivalent description you have

$$f^{-1}(U) = \bigcup_{y \in f^{-1}(x)} V_y \quad \text{disjoint, } V_y \in \mathfrak{V}(y) \ \text{ and } f|V_y \stackrel{\sim}{\longrightarrow} U$$

In particular, a covering is separated and étale.

In the sequel we will investigate the functorial behaviour of the above classes of morphisms in these situations:

**base change:** given a map  $f: Y \to X$  and an arbitrary base change  $X_1 \xrightarrow{\varphi} X$ 

$$Y \longleftarrow Y_1$$

$$\downarrow f \qquad \qquad \downarrow f_1$$

$$X \longleftarrow X_1$$

with  $Y_1 = Y \underset{X}{\times} X_1$ , is the property preserved for  $f_1$ ?

**composition:** given two maps  $f: Y \to X$  and  $g: Z \to Y$ , is the property preserved for  $h = f \circ g: Z \to X$ ?

# 2. ÉTALE MORPHISMS

Proposition 2.1. Étale maps are stable under base change:

$$Y \overset{\psi}{\longleftarrow} Y_1$$

$$f \downarrow \qquad \qquad \downarrow f_1$$

$$X \overset{\varphi}{\longleftarrow} X_1$$

where  $Y_1 = Y \underset{X}{\times} X_1$ . If f is étale, then  $f_1$  is étale.

Let  $Z \xrightarrow{g} Y \xrightarrow{f} X$ ,  $h = f \circ g$ . If two of the maps f, g, h are étale, the third is étale as well.

Proof. Let us prove stability under base change: pick  $y_1 \in Y_1$ , let  $y = \psi(y_1)$  and  $x_1 = f_1(y_1)$ , such that  $y_1 = (y, x_1)$  with  $f(y) = \varphi(x_1) = x$ . As f is étale there is  $V \in \mathfrak{V}(y)$  such that  $U = f(V) \in \mathfrak{V}(x)$  satisfies  $f|V: V \xrightarrow{\sim} U$ . Set  $V_1 = \psi^{-1}(V)$  and  $U_1 = \varphi^{-1}(U)$  then I claim that  $f_1|V_1: V_1 \xrightarrow{\sim} U_1$ . But since  $V_1 = V \times U_1$  and  $f_1(v, u_1) = u_1$  this is obvious.

Let us prove the second assertion: it is clear that the composition of étale maps is étale, we are in a local situation like

$$\begin{array}{cccc}
W & \xrightarrow{\sim} V & \xrightarrow{\sim} U \\
\downarrow & & \downarrow & \downarrow \\
Z & \xrightarrow{g} Y & \xrightarrow{f} X
\end{array}$$

and f, g étale  $\Longrightarrow h$  étale, and f, h étale  $\Longrightarrow g$  étale, and g, h étale  $\Longrightarrow f$  étale.  $\square$ 

Obviously, étale mappings  $f: Y \longrightarrow X$  are open, as this is a local property. But this also holds for their sections:

**Lemma 2.2.** Let  $U \subset X$  be open,  $s: U \longrightarrow Y$  be a section of f, i.e.  $f \circ s = id_U$ . Then  $V = s(U) \subset Y$  is open.

Proof. Take a  $y \in V$ , we will show  $V \in \mathfrak{V}(y)$ . Say y = s(x) for  $x \in U$ , hence f(y) = x. Let  $W \in \mathfrak{V}(y)$  be such that  $f|W: W \xrightarrow{\sim} f(W) \subset U$  and consider  $f^{-1}s^{-1}W \cap W \in \mathfrak{V}(y)$ . For  $z \in W \cap f^{-1}s^{-1}W$  we have  $f(s \circ f(z)) = f(z)$ , which implies  $s \circ f(z) = z \in s(U) = V$ , therefore  $W \cap f^{-1}s^{-1}W \subset V$  and V is a neighbourhood of y.

**Lemma 2.3.** Let  $U \subset X$  be open,  $s, t : U \longrightarrow Y$  sections with s(x) = t(x) at one point  $x \in U$ . Then  $\exists$  a neighbourhood  $U_1$  of x such that  $s|U_1 = t|U_1$ .



Proof.  $s(U) \cap t(U)$  is an open neighbourhood of s(x) = t(x). If  $y \in s(U) \cap t(U)$ , then y = s(f(y)) = t(f(y)), therefore  $s|U_1 = t|U_1$  for  $U_1 := f(s(U) \cap t(U))$ .

**Corollary 2.4.** Let  $f: Y \to X$  be étale,  $h: Z \to X$  arbitrary,  $\sigma, \tau: Z \to Y$  morphisms /X (i.e.  $f \circ \sigma = f \circ \tau$ ) with  $\sigma(z) = \tau(z)$  at one point  $z \in Z$ . Then  $\exists W \in \mathfrak{V}(z)$  such that  $\sigma|W = \tau|W$ .

*Proof.* Define sections 
$$s, t: Z \to Z \underset{X}{\times} Y, \ s(z) = (z, \sigma(z)), \ t(z) = (z, \tau(z)).$$

Remark. The category of étale spaces over X is equivalent to the category of sheaves on X, see Godement [3, II, §1.2] L'espace étalé attaché à un faisceau; this category is the basic example of a topos Top(X), see SGA 4 [4, IV, 2.1] Topos associé à un espace topologique. To an étale mapping  $f: F \longrightarrow X$  under this equivalence is associated the sheaf of sections  $\mathcal F$  defined by  $\mathcal F(U):=\Gamma(U,F)=\{s: U\to F\mid f\circ s=id_U\}$ . The fiber over x is discrete and by Lemma 2.3 isomorphic to the stalk of the sheaf

$$f^{-1}(x) = F_x \xrightarrow{\sim} \mathfrak{F}_x = \varinjlim_{U \in \mathfrak{V}(x)} \mathfrak{F}(U)$$

by sending a  $y \in F_x$  to the germ of the section  $(f|V)^{-1}$ ,  $V \in \mathfrak{V}(y)$  suitably chosen. The reverse is done by mapping the germ  $s_x \in \mathcal{F}_x$  to the value  $s(x) \in F_x$ .

## 3. Separated morphisms

**Proposition 3.1.** Separated maps are stable under base change:

$$Y \longleftarrow Y_1$$

$$f \downarrow \qquad \qquad \downarrow f_1$$

$$X \longleftarrow X_1$$

where  $Y_1 = Y \underset{X}{\times} X_1$ . If f is separated, then  $f_1$  is separated.

 $\textit{In a diagram $Z \xrightarrow{g} Y \xrightarrow{f} X$ : $f,g$ separated} \Longrightarrow f \circ g$ separated \Longrightarrow g$ separated.$ 

Proof. f separated is equivalent to the diagonal  $\Delta_Y \subset Y \times Y$  is closed. For the canonical map  $\psi: Y_1 \times Y_1 \longrightarrow Y \times Y$  we have  $\psi^{-1}(\Delta_Y) = \Delta_{Y_1}$ . The last assertions follow from the definitions.

**Proposition 3.2.** A section s of a separated morphism

$$f: Y \xrightarrow{s} X$$

is a closed embedding.

*Proof.* For embedding holds for any section and closed follows from  $s(X) = t^{-1}(\Delta_Y)$ , where t is the section on Y pulled back from  $s: t(y) = (s \circ f(y), y)$ 

$$Y \longleftarrow Y \times_X Y$$

$$s \left( \middle| f \qquad \middle| \right) t$$

$$X \longleftarrow Y$$

**Lemma 3.3.** Let  $f: Y \to X$  be étale and separated, Z connected and  $h: Z \to X$  arbitrary. Then  $\forall z \in Z$  the maps

$$\operatorname{Hom}_X(Z,Y) \longrightarrow f^{-1}(h(z))$$
  
 $\sigma \longmapsto \sigma(z)$ 

are injective.

*Proof.* Let  $\sigma, \tau \in \text{Hom}_X(Z, Y)$  and define  $g: Z \to Y \times_X Y$  by  $g(z) := (\sigma(z), \tau(z))$ .  $g^{-1}(\Delta_Y)$  is closed and open (Cor. 2.4), hence  $g^{-1}(\Delta_Y) = Z$  if  $\neq \emptyset$ , i.e.  $\sigma = \tau$ .  $\square$ 

#### 4. Proper morphisms

**Lemma 4.1.** Let  $f: Y \to X$  be proper, then it is quasi-compact:  $\forall K \subset X$  quasi-compact  $\Longrightarrow f^{-1}(K) \subset Y$  is quasi-compact.

*Proof.* Start with a family of open sets  $(V_{\alpha})_{\alpha}$  such that  $f^{-1}(K) \subset \bigcup_{\alpha} V_{\alpha} =: V$ . For any finite index subset I define  $V_I := \bigcup_{\alpha \in I} V_{\alpha}$  and  $U_I := X - f(Y - V_I)$ , U := X - f(Y - V). Obviously  $K \subset U$ ,  $U_I \subset U$ .

Now, for  $u \in U$  we have  $f^{-1}(u) \subset V$ , and by quasi-compactness of the fibers there exists I such that  $f^{-1}(u) \subset V_I$ , that is  $u \in U_I$  and thus  $K \subset \bigcup_I U_I$ . By quasi-compactness of K we can find finitely many I, that is there is an I with  $K \subset U_I$ . This implies  $f^{-1}(K) \subset V_I$ .

**Proposition 4.2.** Proper maps are stable under base change:

$$Y \longleftarrow Y_1$$

$$f \downarrow \qquad \qquad \downarrow f_1$$

$$X \longleftarrow X_1$$

where  $Y_1 = Y \underset{X}{\times} X_1$ .

If f is proper, then  $f_1$  is proper.

*Proof.* For  $x_1 \in X_1$  the fiber  $f_1^{-1}(x_1) = f^{-1}(\varphi(x_1)) \times \{x_1\}$  is quasi-compact.

To show that  $f_1$  is closed let  $A \subset Y_1$  be closed and let us show that  $X_1 - f_1(A)$  is open. Consider a point  $x_1 \in X_1 - f_1(A)$ . For any  $y \in f^{-1}(\varphi(x_1))$  we have  $(y, x_1) \in Y_1 - A$ , therefore there are neighbourhoods V of y and  $U_1$  of  $x_1$  with

 $V \times U_1 \cap A = \varnothing$ . As the fiber is quasi-compact a finite number of the V cover the fiber. Replace V with this finite union and  $U_1$  with the corresponding finite intersection: we have found an open  $V \supset f^{-1}(\varphi(x_1))$  and and  $U_1 \ni x_1$  with  $V \times U_1 \cap A = \varnothing$ . Set U := X - f(Y - V), then  $\varphi(x_1) \in U$  and U is open in X, by continuity of  $\varphi$  and eventually restricting  $U_1$  further we may assume  $\varphi(U_1) \subset U$ . This implies  $f^{-1}\varphi(U_1) \subset V$  and from this we get  $x_1 \in U_1 \subset X_1 - f_1(A)$ .

**Proposition 4.3.** In a diagram  $Z \xrightarrow{g} Y \xrightarrow{f} X$  we have

(1) 
$$f, g \text{ are proper} \Longrightarrow f \circ g \text{ is proper}$$

(2) 
$$f \circ g$$
 is proper,  $g$  surjective  $\Longrightarrow f$  is proper

(3) 
$$f \circ g \text{ is proper, } f \text{ separated} \Longrightarrow g \text{ is proper}$$

*Proof.* (1) is clear by the lemma 4.1.

(2) Let  $h = f \circ g$ .

 $\forall B \subset Y \text{ is } f(B) = h(g^{-1}(B)), \text{ hence } f \text{ closed.}$ 

 $\forall x \in X \text{ is } f^{-1}(x) = g(h^{-1}(x)), \text{ hence } f \text{ quasi-compact.}$ 

(3) Apply base change:  $Z' = Z \times_{Y} Y$ , consider

$$Z \overset{p}{\underset{s}{\longleftarrow}} Z'$$

$$\downarrow h_1$$

$$X \overset{f}{\longleftarrow} Y$$

 $h_1$  is proper by base change (Prop. 4.2), the section s is defined by s(z) := (z, g(z)). Now, p is separated as a base change of f (Prop. 3.1), hence the section s is a closed embedding (Prop. 3.2), in particular it is proper. It follows by (1) that  $g = h_1 \circ s$  is proper.

# 5. Finite coverings

**Definition 5.1.** If all fibers of a covering  $f: Y \to X$  are finite, then the map  $X \to \mathbb{N}$ ,  $x \mapsto \#f^{-1}(x)$  is locally constant on X and f is called locally finite covering. It is called (globally) finite, if all fibers have the same number n of points, which is called its degree:  $\deg f = n = \#f^{-1}(x), \ \forall x \in X$ .

**Proposition 5.1.** A separated étale morphism  $f: Y \to X$  such that  $x \mapsto \#f^{-1}(x)$  is locally constant, is a locally finite covering.

Proof. Without loss of generality assume  $n = \#f^{-1}(x) \quad \forall x \in X$  (restricting to such a neighbourhood).  $f^{-1}(x) = \{y_1, \ldots, y_n\}$ . There are open neighbourhoods  $V_1, \ldots, V_n$  of  $y_1, \ldots, y_n$ , pairwise disjoint, with  $f|V_i$  is homeomorph to its image. Define  $U := \bigcap_i f(V_i)$ , then with  $W_i := f^{-1}(U) \cap V_i$  we have  $f(W_i) = U$  and  $f^{-1}(U) = \bigcup_i W_i$  disjoint.

**Theorem 5.2.**  $f: Y \to X$  is a locally finite covering if and only if f is étale, separated and proper.

*Proof.* " $\Rightarrow$ " It remains to show 'proper'. The fibers are finite, so they are quasicompact. Let us show 'closed'. Obviously X - f(Y) is open, hence f(Y) closed (and open), so that we may assume X = f(Y). Let  $B \subset Y$  be closed,  $x \notin f(B)$ , say U a neighbourhood of x with  $f^{-1}(U) = V_1 \cup \cdots \cup V_n$ ,  $f|V_i : V_i \xrightarrow{\sim} U$ , and since

 $f^{-1}(x) \subset Y - B$  we can assume (eventually shrinking  $V_i$ ) that  $V_i \subset Y - B$ . Hence  $f^{-1}(U) \subset Y - B$ , that is  $U \cap f(B) = \emptyset$  and X - f(B) is open.

"\(\infty\)" Let f be \(\'ext{\text{etale}}\), separated and proper.  $x \in X$ , the fiber  $f^{-1}(x)$  is discrete and quasi-compact, therefore finite, say  $f^{-1}(x) = \{y_1, \ldots, y_n\}$ .

As X - f(Y) is open, we can assume  $x \in f(Y)$ , that is  $n \ge 1$ . There are pairwise disjoint open sets  $W_1, \ldots, W_n$  with  $y_i \in W_i$  and  $f|W_i : W_i \xrightarrow{\sim} f(W_i)$ . Set

$$U := f(W_1) \cap \cdots \cap f(W_n) \cap (f(Y) - f(Y - (W_1 \cup \cdots \cup W_n)))$$

U is an open neighbourhood of x. With  $V_i := f^{-1}(U) \cap W_i$  is by construction

$$f^{-1}(U) = V_1 \stackrel{.}{\cup} \cdots \stackrel{.}{\cup} V_n$$
 and  $f|V_i : V_i \stackrel{\sim}{\longrightarrow} U$ 

This implies good functorial properties through the propositions 2.1, 3.1, 4.2, 4.3.

Corollary 5.3. Stability under base change:

$$Y \longleftarrow Y_1$$

$$\downarrow f_1$$

$$X \longleftarrow X_1$$

where  $Y_1 = Y \underset{X}{\times} X_1$ .

If f is locally finite covering, then  $f_1$  is locally finite covering. A finite covering is stable under base change.

In a diagram  $Z \xrightarrow{g} Y \xrightarrow{f} X$ ,  $h = f \circ g$  we have

f,g are locally finite coverings  $\implies$  h is locally finite covering.

f,h are locally finite coverings  $\Longrightarrow g$  is locally finite covering.

g,h are locally finite coverings with surjective  $g \Longrightarrow f$  is locally finite covering.

From the formula

$$\#h^{-1}(x) = \sum_{y \in f^{-1}(x)} \#g^{-1}(y)$$

we also deduce that

f, g are finite coverings  $\Longrightarrow h$  is a finite covering.

q,h are finite coverings with surjective  $q \Longrightarrow f$  is a finite covering.

Note. g need not be finite, if f and h are finite, e.g. if Z and Y are not connected.

**Lemma 5.4.** Let  $f: Y \to X$  and  $h: Z \to X$  be finite coverings over a connected space X and let  $g: Z \to Y$  be an X-morphism  $f \circ g = h$ .

For  $x \in X$  let  $g_x : h^{-1}(x) \to f^{-1}(x)$  be the fiber map. If one of them is bijective, then all are and g is a homeomorphism.

Proof. According to Cor. 5.3 g is a locally finite covering. If we had  $Y - g(Z) \neq \emptyset$  then this open and closed set would imply f(Y - g(Z)) = X and a  $y \in Y - g(Z)$  with f(y) = x would contradict the surjectivity of  $g_x$ . Therefore we have g(Z) = Y and for all  $y \in Y$  we must have  $\#g^{-1}(y) \geq 1$ . Now for  $x' \in X$  we get  $\deg h = \sum_{y \in f^{-1}(x')} \#g^{-1}(y) \geq \#f^{-1}(x') = \deg f = \deg h$ , thus  $\forall y \in Y \#g^{-1}(y) = 1$ .  $\square$ 

**Lemma 5.5.** Let X be connected,  $f: Y \longrightarrow X$  a finite covering.

Then we have  $Y = Z_1 \dot{\cup} \cdots \dot{\cup} Z_r$  where  $Z_i$  are the non-empty connected components of Y, and  $f_i : Z_i \longrightarrow X$ ,  $f_i = f|Z_i$ , are surjective finite coverings.

*Proof.* Without restriction assume  $Y \neq \emptyset$  (otherwise r = 0). Consider the open and closed subsets  $\emptyset \neq Z \subset Y$ . f(Z) = X, as X is connected and  $Z \longrightarrow X$  is a finite covering. If  $Z' \subset Z$  and  $Z' \cap f^{-1}(x) = Z \cap f^{-1}(x)$ , then Z' = Z by the previous Lemma. There are minimal  $Z \neq \emptyset$  and these must be connected. This signifies the finite many minimal Z's are the connected components of Y – and all is done.

#### 6. Galois coverings

**Definition 6.1.** A finite covering  $f: Y \longrightarrow X$  of connected spaces is called  $Galois^1$  with group  $G = G(Y/X) := \operatorname{Aut}(Y/X)$ , if one of the following equivalent conditions is satisfied:

(1) 
$$\exists y \in Y \quad e_y : G \longrightarrow f^{-1}(f(y)) \text{ is bijective}$$
 
$$\sigma \longmapsto \sigma(y)$$

(2) 
$$\forall y \in Y \quad e_y : G \longrightarrow f^{-1}(f(y)) \text{ is bijective}$$

(3) 
$$e: G \times Y \xrightarrow{\sim} Y \underset{X}{\times} Y$$
$$(\sigma, y) \longmapsto (\sigma(y), y)$$

*Proof.* (of equivalence) (3)  $\Rightarrow$  (2)  $\Rightarrow$  (1) is evident. If (1) holds, apply Lemma 5.4 to the diagram (3) /Y.

**Theorem 6.1.** Let  $f: Y \longrightarrow X$  be a finite covering of connected spaces  $\neq \emptyset$ . Then there exists a finite Galois covering  $h: Z \longrightarrow X$  such that

$$e: Z \times \operatorname{Hom}_X(Z,Y) \xrightarrow{\sim} Z \underset{X}{\times} Y \qquad /Z$$
  
 $(z,g) \longmapsto (z,g(z))$ 

and any  $T \to X$  with this property, i.e.

$$T \times \operatorname{Hom}_X(T, Y) \xrightarrow{\sim} T \underset{\mathbf{Y}}{\times} Y$$

factors thru  $Z \colon T \longrightarrow Z \xrightarrow{h} X$ .

*Proof.* Let 
$$x \in X$$
 and  $f^{-1}(x) = \{y_1, \dots, y_n\}, n = \deg f$ . Choose  $Z \subset (Y/X)^n := Y \times_X \cdots \times_X Y \xrightarrow{p_i} Y$ 

to be the connected component of  $(y_1, \ldots, y_n)$  and  $h: Z \longrightarrow X$  canonical.

By Lemma 3.3 e is injective, but the fiber over  $(y_1, \ldots, y_n) \in Z$  is mapped surjectively onto  $f^{-1}(x)$ :  $\operatorname{Hom}_X(Z,Y) \xrightarrow{\sim} f^{-1}(x)$ , as  $p_i \in \operatorname{Hom}_X(Z,Y)$ , hence e is bijective by Lemma 5.4.

It remains to be shown that Z/X is Galois. Let  $z \in h^{-1}(x)$ , we have  $p_i(z) \in f^{-1}(x)$ , so  $p_i(z) = y_{\sigma(i)}$  for some permutation  $\sigma \in \mathbf{S}_n$ . Interpret  $\sigma$  as a morphism  $\sigma : (Y/X)^n \longrightarrow (Y/X)^n$ . Since  $Z \cap \sigma(Z) \neq \emptyset$  we must have  $Z = \sigma(Z)$ , and thus  $\sigma \in G(Z/X)$  with  $\sigma(y_1, \ldots, y_n) = z$  and

$$e_{(y_1,\ldots,y_n)}:G(Z/X)\stackrel{\sim}{\longrightarrow} h^{-1}(x)$$

<sup>&</sup>lt;sup>1</sup>also normal

is bijective.

The assertion for T follows at once, since

$$T \longrightarrow (Y/X)^n$$
  
 $t \longmapsto (\alpha_1(t), \dots, \alpha_n(t))$ 

has image Z, if  $\operatorname{Hom}_X(T,Y) = \{\alpha_1, \dots, \alpha_n\}$  has been suitably numbered.  $\square$ 

**Lemma 6.2.** Let  $f: Y \longrightarrow X$  be Galois, then G(Y/X) operates simply transitive on  $\operatorname{Hom}_X(Z,Y)$  for any  $h: Z \longrightarrow X$ .

*Proof.* Without restriction assume  $\operatorname{Hom}_X(Z,Y) \neq \emptyset$ , let  $g:Z \longrightarrow Y$  be such that  $f \circ g = h$ . Let  $z \in Z$ , y = g(z), x = f(y) = h(z) and consider

$$\begin{array}{cccc} G(Y/X) & \hookrightarrow & \operatorname{Hom}_X(Z,Y) & \hookrightarrow & f^{-1}(x) \\ \rho & \longmapsto & \rho \circ g & \longmapsto & \rho(y) \end{array}$$

The injectivity of these mappings follows from Lemma 3.3, the surjectivity of the composed mapping implies  $G(Y/X) \xrightarrow{\sim} \operatorname{Hom}_X(Z,Y)$ .

**Theorem 6.3.** In the situation  $h: Z \xrightarrow{g} Y \xrightarrow{f} X$  let Z/X be Galois. Then Z/Y is Galois, and Y/X is Galois exactly if  $G(Z/Y) \triangleleft G(Z/X)$  is a normal subgroup. Moreover G(Z/X) operates transitively on  $\operatorname{Hom}_X(Z,Y)$ . In the Galois case we have canonically

$$G(Y/X) \xrightarrow{\sim} \operatorname{Hom}_X(Z,Y) \xrightarrow{\sim} G(Z/X)/G(Z/Y)$$

*Proof.* Let  $z \in \mathbb{Z}$ , y = g(z), x = f(y) and consider the diagram

$$G(Z/X) \xrightarrow{\sim} h^{-1}(x) \qquad \tau \mapsto \tau(z)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$G(Z/Y) \xrightarrow{\sim} g^{-1}(y)$$

If  $\tau(z) \in g^{-1}(y)$ , then we have  $g \circ \tau(z) = g(z)$ , hence by Lemma 3.3  $g \circ \tau = g$ , i.e.  $\tau \in G(Z/Y)$  and therefore Z/Y is Galois. Furthermore the isotropy group of  $g \in \operatorname{Hom}_X(Z,Y)$  in G(Z/X) is exactly G(Z/Y), so

$$G(Z/Y)\backslash G(Z/X) \hookrightarrow \operatorname{Hom}_X(Z,Y)$$

Now, the set on the right has at most  $\deg f = \deg Y/X$  elements (Lemma 3.3) and the set on the left has exactly  $\deg h/\deg g = \deg f$  elements, which implies  $\operatorname{Hom}_X(Z,Y) = \{g \circ \tau \mid \tau \in G(Z/X)\}.$ 

Now let us investigate the case Y/X Galois: then by Lemma 6.2  $G(Y/X) \xrightarrow{\sim} \operatorname{Hom}_X(Z,Y)$ ,  $\rho \mapsto \rho \circ g$  is bijective. This gives us a canonical mapping

$$\begin{array}{ccc} G(Z/X) & \longrightarrow & G(Y/X) \\ \tau & \longmapsto & \rho & \text{where } \rho \circ g = g \circ \tau \end{array}$$

and we see immediately that this is a homomorphism. The kernel  $G(\mathbb{Z}/Y)$  is therefore a normal subgroup.

Now let G(Y/X) be a normal subgroup and let us show that Y/X is Galois, that is  $\#G(Y/X) = \deg f$ . Let  $\tau \in G(Z/X)$ ,  $y \in Y$  be given. For any two  $z, z' \in g^{-1}(y)$  there is  $\sigma \in G(Z/Y)$  with  $z' = \sigma(z)$ . By assumption  $\tau \sigma \tau^{-1} \in G(Z/Y)$ , hence  $g \circ \tau \sigma = g \circ \tau$ , and  $g(\tau(z')) = g(\tau(z))$  and  $g \circ \tau$  is constant on the fiber, so that the definition  $\rho(y) := g(\tau(z))$ , for any  $z \in g^{-1}(y)$  is meaningful. This shows the surjectivity of  $G(Y/X) \longrightarrow \operatorname{Hom}_X(Z,Y)$ .

Now let a connected space  $Y \neq \emptyset$  be given with a finite group  $G < \operatorname{Aut}(Y)$  of homeomorphisms. Let  $X := G \setminus Y$  be the orbit space, the quotient mapping  $f: Y \longrightarrow X$  is open and proper. Furthermore f is separated exactly if

$$\forall y \in Y \ \exists \ V \in \mathfrak{V}(y) \text{ such that } \forall \sigma \in G - G_y \quad V \cap \sigma(V) = \varnothing$$

Under this condition G is said to operate on Y discontinuously.

For f to be étale it is necessary and sufficient that the operation be fixpoint free. We conclude:

**Theorem 6.4.** Let  $G \subset \operatorname{Aut}(Y)$  be a finite group, which operates discontinuously and without fixpoints on a connected space  $Y \neq \emptyset$ , let  $X := G \setminus Y$ . Then Y is a Galois covering of X with Galois group G(Y/X) = G.

#### References

- [1] Nicolas Bourbaki, Topologie générale, Springer, Berlin, 2007.
- [2] Jean Giraud, Cours de C3: Surfaces de Riemann compactes (1969-1970) (2005), available at http://sites.mathdoc.fr/PMO/PDF/J\_GIRAUD\_1969-70.pdf.
- [3] Roger Godement, Topologie algébrique et théorie des faisceaux, Publications de l'Institut de Mathématique de l'Université de Strasbourg, vol. XIII, Hermann, Paris, 1958, 1998.
- [4] Alexander Grothendieck, Michael Artin, and Jean-Louis Verdier, SGA 4: Théorie des Topos et Cohomologie Étales des Schémas, tome 1-3, Lecture Notes in Math., vol. 269, 270, 305, Springer, 1972.
- [5] Berndt E. Schwerdtfeger, Topological Covering Theory, Topology Atlas 429 (2000), 1–9. Preprint 1998.
- [6] Jean-Louis Verdier, Groupe fondamental étale et topologique (2007), available at http://berndt-schwerdtfeger.de/wp-content/uploads/pdf/gfet.pdf. Cours de 3ème cycle 1970.

# Index

| В                                                             |
|---------------------------------------------------------------|
| base change stability under                                   |
| C                                                             |
| of étale spaces         3           of sheaves         3      |
| closed embedding                                              |
| covering                                                      |
| finite                                                        |
| locally finite         5           normal         7           |
| D degree of finite covering5                                  |
| discontinuous operation9                                      |
| <b>E</b> étale spaces                                         |
| <b>G</b> Galois covering                                      |
| L locally finite                                              |
| M                                                             |
| morphism         étale         1           covering         1 |
| proper                                                        |
| N                                                             |
| normal covering                                               |
| section2                                                      |
| sheaf of sections                                             |
| stability under base change                                   |
| finite morphism                                               |
| locally finite morphism6                                      |
| proper morphism 4                                             |
| separated morphism 3                                          |
| $\mathbf{T}$ topos of $X$                                     |
| topos of X                                                    |