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INTRODUCTION

Commutative algebra is essentially the study of commutative rings. Roughly speaking,
it has developed from two sources: (1) algebraic geometry and (2) algebraic number
theory. In (1) the prototype of the rings studied is the ring k[x1, . . . , xn] of polynomials
in several variables over a field k; in (2) it is the ring Z of rational integers. Of these two
the algebro-geometric case is the more far-reaching and, in its modern development by
Grothendieck, it embraces much of algebraic number theory. Commutative algebra is
now one of the foundation stones of this new algebraic geometry. It provides the com-
plete local tools for the subject in much the same way as differential analysis provides
the tools for differential geometry.

This book grew out of a course of lectures given to third year undergraduates at Oxford
University and it has the modest aim of providing a rapid introduction to the subject.
It is designed to be read by students who have had a first elementary course in gen-
eral algebra. On the other hand, it is not intended as a substitute for the more volu-
minous tracts on commutative algebra such as Zariski-Samuel [5] or Bourbaki [1]. We
have concentrated on certain central topics, and large areas, such as field theory, are not
touched. In content we cover rather more ground than Northcott [3] and our treatment
is substantially different in that, following the modern trend, we put more emphasis on
modules and localization.

The central notion in commutative algebra is that of a prime ideal. This provides a
common generalization of the primes of arithmetic and the points of geometry. The
geometric notion of concentrating attention near a point has as its algebraic analogue
the important process of localizing a ring at a prime ideal. It is not surprising, there-
fore, that results about localization can usefully be thought of in geometric terms. This
is done methodically in Grothendieck’s theory of schemes and, partly as an introduction
to Grothendieck’s work [2], and partly because of the geometric insight it provides, we
have added schematic versions of many results in the form of exercises and remarks.

The lecture-note origin of this book accounts for the rather terse style, with little general
padding, and for the condensed account of many proofs. We have resisted the tempta-
tion to expand it in the hope that the brevity of our presentation will make clearer the
mathematical structure of what is by now an elegant and attractive theory. Our philos-
ophy has been to build up to the main theorems in a succession of simple steps and to
omit routine verifications.

Anyone writing now on commutative algebra faces a dilemma in connection with ho-
mological algebra, which plays such an important part in modern developments. A
proper treatment of homological algebra is impossible within the confines of a small
book: on the other hand, it is hardly sensible to ignore it completely. The compro-
mise we have adopted is to use elementary homological methods—exact sequences,
diagrams, etc.—but to stop short of any results requiring a deep study of homology. In
this way we hope to prepare the ground for a systematic course on homological alge-
bra which the reader should undertake if he wishes to pursue algebraic geometry in any
depth.

We have provided a substantial number of exercises at the end of each chapter. Some of
them are easy and some of them are hard. Usually we have provided hints, and some-
times complete solutions, to the hard ones. We are indebted to Mr. R. Y. Sharp, who
worked through them all and saved us from error more than once.

We have made no attempt to describe the contributions of the many mathematicians
who have helped to develop the theory as expounded in this book. We would, however,
like to put on record our indebtedness to J.-P. Serre and J. Tate from whom we learnt the
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subject, and whose influence was the determining factor in our choice of material and
mode of presentation.

[1] Nicolas Bourbaki, Algèbre commutative, Springer, Berlin, 2006, 2007.
[2] Alexander Grothendieck and Jean Dieudonné, Éléments de Géometrie Algébrique, Publ. Math. I.H.E.S. 4, 8,

11, 17, 20, 24, 28, 32 (1960/1967).
[3] Douglas Geoffrey Northcott, Ideal Theory, Cambridge University Press, Cambridge, 1953.
[4] Jean-Pierre Serre, Algèbre Locale, Multiplicités, 2nd ed., Lecture Notes in Math., vol. 11, Springer, Berlin,

1965.
[5] Oscar Zariski and Pierre Samuel, Commutative Algebra I, II, Van Nostrand, Princeton, 1958, 1960.

NOTATION AND TERMINOLOGY

Rings and modules are denoted by capital italic letters, elements of them by small italic
letters. A field is often denoted by k. Ideals are denoted by small German characters. Z,
Q, R, C denote respectively the ring of rational integers, the field of rational numbers,
the field of real numbers and the field of complex numbers.

Mappings are consistently written on the left, thus the image of an element x under
a mapping f is written f (x) and not (x) f . The composition of mappings f : X → Y ,
g : Y → Z is therefore g ◦ f , not f ◦ g .

A mapping f : X → Y is injective if f (x1) = f (x2) implies x1 = x2; surjective if f (X ) = Y ;
bijective if both injective and surjective.

The end of a proof (or absence of proof) is marked thus □.

Inclusion of sets is denoted by the sign ⊂ and strict inclusion by ⊊.

The original book Introduction to Commutative Algebra by Atiyah/Macdonald was pub-
lished in 1969. This digital re-issue is meant for educational and scholarly purposes
only. It is typeset with TEX, version v1.0 was published on 17.11.2024.

1. RINGS AND IDEALS

We shall begin by reviewing rapidly the definition and elementary properties of rings.
This will indicate how much we are going to assume of the reader and it will also serve
to fix notation and conventions. After this review we pass on to a discussion of prime
and maximal ideals. The remainder of the chapter is devoted to explaining the various
elementary operations which can be performed on ideals. The Grothendieck language
of schemes is dealt with in the exercises at the end.

1.1. Rings and ring homomorphisms. A ring A is a set with two binary operations (ad-
dition and multiplication) such that

(1) A is an abelian group with respect to addition (so that A has a zero element,
denoted by 0, and every x ∈ A has an (additive) inverse, −x)

(2) Multiplication is associative (x y)z = x(y z) and distributive over addition
x(y + z) = x y +xz, (y + z)x = y x + zx.

We shall consider only rings which are commutative:

(3) x y = y x for all x, y ∈ A

and have an identity element (denoted by 1):

(4) ∃ 1 ∈ A such that x1 = 1x = x for all x ∈ A
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The identity element is then unique.

Throughout this book the word ring shall mean a commutative ring with an identity
element, that is, a ring satisfying axioms (1) to (4) above.

Remark. We do not exclude the possibility in (4) that 1 might be equal to 0. If so, then
for any x ∈ A we have

x = x1 = x0 = 0

and so A has only one element, 0. In this case A is the zero ring, denoted by 0 (by abuse
of notation).

A ring homomorphism is a mapping f of a ring A into a ring B such that

(1) f (x + y) = f (x) + f (y) (so that f is a homomorphism of abelian groups, and
therefore also f (x − y) = f (x)− f (y), f (−x) =− f (x), f (0) = 0),

(2) f (x y) = f (x) f (y),
(3) f (1) = 1.

In other words, f respects addition, multiplication and the identity element.

A subset S of a ring A is a subring of A if S is closed under addition and multiplication
and contains the identity element of A. The identity mapping of S into A is then a ring
homomorphism.

If f : A → B , g : B →C are ring homomorphisms then so is their composition g ◦ f : A →
C .

1.2. Ideals. Quotient rings. An ideal a of A is a subset of A which is an additive sub-
group and is such that Aa ⊆ a (i.e., x ∈ A and y ∈ a imply x y ∈ a). The quotient group
A/a inherits a uniquely defined multiplication from A which makes it into a ring, called
the quotient ring (or residue-class ring) A/a. The elements of A/a are the cosets of a in
A, and the mapping φ : A → A/a which maps each x ∈ A to its coset x +a is a surjective
ring homomorphism.

We shall frequently use the following fact:

Proposition 1.1. There is a one-to-one order-preserving correspondence between the ideals
b of A which contain a, and the ideals b̄ of A/a, given by b=φ−1(b̄). □

If f : A → B is any ring homomorphism, the kernel of f (= f −1(0)) is an ideal a of A, and
the image of f (= f (A)) is a subring C of B ; and f induces a ring isomorphism A/a≃C .

We shall sometimes use the notation x ≡ y (mod a); this means that x − y ∈ a.

1.3. Zero-divisors. Nilpotent elements. Units. A zero-divisor in a ring A is an element
x which divides 0, i.e., for which there exists y ̸= 0 in A such that x y = 0. A ring with no
zero-divisors ̸= 0 (and in which 1 ̸= 0) is called an integral domain. For example, Z and
k[x1, . . . , xn] (k a field, xi indeterminates) are integral domains.

An element x ∈ A is nilpotent if xn = 0 for some n > 0. A nilpotent element is a zero-
divisor (unless A = 0), but not conversely (in general).

A unit in A is an element x which divides 1, i.e., an element x such that x y = 1 for some
y ∈ A. The element y is then uniquely determined by x and is written x−1. The units in
A form a (multiplicative) abelian group.

The multiples ax of an element x ∈ A form a principal ideal, denoted by (x) or Ax.
x is a unit ⇔ (x) = A = (1). The zero ideal (0) is usually denoted by 0.

A field is a ring A in which 1 ̸= 0 and every non-zero element is a unit. Every field is an
integral domain (but not conversely: Z is not a field).
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Proposition 1.2. Let A be a ring ̸= 0. Then the following are equivalent:

(1) A is a field;
(2) the only ideals in A are 0 and (1);
(3) every homomorphism of A into a non-zero ring B is injective.

Proof. (1) ⇒ (2). Let a ̸= 0 be an ideal in A. Then a contains a non-zero element x; x is
a unit, hence a⊃ (x) = (1), hence a= (1).

(2) ⇒ (3). Let φ : A → B be a ring homomorphism. Then Ker(φ) is an ideal ̸= (1) in A,
hence Ker(φ) = 0, hence φ is injective.

(3) ⇒ (1). Let x be an element of A which is not a unit. Then (x) ̸= (1), hence B = A/(x) is
not the zero ring. Let φ : A → B be the natural homomorphism of A onto B with kernel
(x). By hypothesis, φ is injective, hence (x) = 0, hence x = 0. □

1.4. Prime ideals and maximal ideals. An ideal p in A is prime if p ̸= (1) and if
x y ∈ p⇒ x ∈ p or y ∈ p.

An ideal m in A is maximal if m ̸= (1) and if there is no ideal a such that m ⊊ a ⊊ (1).
Equivalently:

p is prime ⇔ A/p is an integral domain;
m is maximal ⇔ A/m is a field (by (1.1) and (1.2))

Hence a maximal ideal is prime (but not conversely, in general). The zero ideal is prime
⇔ A is an integral domain.

If f : A → B is a ring homomorphism and q is a prime ideal in B , then f −1(q) is a prime
ideal in A, for A/ f −1(q) is isomorphic to a subring of B/q and hence has no zero-divisor
̸= 0. But if n is a maximal ideal of B it is not necessarily true that f −1(n) is maximal in A;
all we can say for sure is that it is prime. (Example: A = Z,B = Q,n= 0.)

Prime ideals are fundamental to the whole of commutative algebra. The following the-
orem and its corollaries ensure that there is always a sufficient supply of them.

Theorem 1.3. Every ring A ̸= 0 has at least one maximal ideal. (Remember that ring
means commutative ring with 1.)

Proof. This is a standard application of Zorn’s lemma.1 LetΣ be the set of all ideals ̸= (1)
in A. Order Σ by inclusion. Σ is not empty, since 0 ∈ Σ. To apply Zorn’s lemma we must
show that every chain in Σ has an upper bound in Σ; let then (aα) be a chain of ideals in
Σ, so that for each pair of indices α,β we have either aα ⊆ aβ or aβ ⊆ aα. Let a = ⋃

αaα.
Then a is an ideal (verify this) and 1 ∉ a because 1 ∉ aα for all α. Hence a ∈Σ, and a is an
upper bound of the chain. Hence by Zorn’s lemma Σ has a maximal element. □

Corollary 1.4. If a ̸= (1) is an ideal of A, there exists a maximal ideal of A containing a.

Proof. Apply (1.3) to A/a, bearing in mind (1.1). Alternatively, modify the proof of (1.3).
□

1Let S be a non-empty partially ordered set (i.e., we are geven a relation x ≤ y on S which is reflexive and
transitive and such that x ≤ y and y ≤ x together imply x = y). A subset T of S is a chain if either x ≤ y or
y ≤ x for every pair of elements x, y in T . Then Zorn’s lemma may be stated as follows: if every chain T in S
has an upper bound in S (i.e., if there exists x ∈ S such that t ≤ x for all t ∈ T ) then S has at least one maximal
element.

For a proof of the equivalence of Zorn’s lemma with the axiom of choice, the well-ordering principle, etc.,
see for example P. R. Halmos, Naïve Set Theory, Van Nostrand (1960).
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Corollary 1.5. Every non-unit of A is contained in a maximal ideal. □

Remarks. 1) If A is Noetherian (Chapter 7) we can avoid the use of Zorn’s lemma: the
set of all ideals ̸= (1) has a maximal element.

2) There exist rings with exactly one maximal ideal, for example fields. A ring A with
exactly one maximal ideal m is called a local ring. The field k = A/m is called the residue
field of A.

Proposition 1.6.

(1) Let A be a ring and m ̸= (1) an ideal of A such that every x ∈ A −m is a unit in A.
Then A is a local ring and m its maximal ideal.

(2) Let A be a ring and m a maximal ideal of A, such that every element of 1+m (i.e.,
every 1+x, where x ∈m) is a unit in A. Then A is a local ring

Proof. (1) Every ideal ̸= (1) consists of non-units, hence is contained in m. Hence m is
the only maximal ideal of A.

(2) Let x ∈ A−m. Since m is maximal, the ideal generated by x and m is (1), hence there
exists y ∈ A and t ∈m such that x y+t = 1; hence x y = 1−t belongs to 1+m and therefore
is a unit. Now use (1). □

A ring with only a finite number of maximal ideals is called semi-local.

Examples. 1) Let A = k[x1, . . . , xn], k a field. Let f ∈ A be an irreducible polynomial. By
unique factorization, the ideal is prime.

2) A = Z. Every ideal in Z is of the form (m) for some m ≥ 0. The ideal (m) is prime
⇔ m = 0 or a prime number. All ideals (p), where p is a prime number, are maximal:
Z/(p) is the field of p elements.

The same holds in Example 1) for n = 1, but not for n > 1. The ideal m of all polynomials
in A = k[x1, . . . , xn] with zero constant term is maximal (since it is the kernel of the ho-
momorphism A → k which maps f ∈ A to f (0)). But if n > 1, m is not a principal ideal:
in fact it requires at least n generators.

3) A principal ideal domain is an integral domain in which every ideal is principal. In
such a ring every non-zero prime ideal is maximal. For if (x) ̸= 0 is a prime ideal and
(y) ⊋ (x), we have x ∈ (y), say x = y z, so that y z ∈ (x) and y ∉ (x), hence z ∈ (x): say
z = t x. Then x = y z = y t x, so that y t = 1 and therefore (y) = (1).

1.5. Nilradical and Jacobson radical.

Proposition 1.7. The set N of all nilpotent elements in a ring A is an ideal, and A/N has
no nilpotent elements ̸= 0.

Proof. If x ∈ N , clearly ax ∈ N for all a ∈ A. Let x, y ∈ N: say xm = 0, yn = 0. By the
binomial theorem (which is valid in any commutative ring), (x + y)m+n−1 is a sum of
integer multiples of products xr y s , where r + s = m +n −1; we cannot have both r < m
and s < n, hence each of these products vanishes and therefore (x+ y)m+n−1 = 0. Hence
x + y ∈N and N is an ideal.

Let x̄ ∈ A/N be represented by x ∈ A. Then x̄n is represented by xn , so that x̄n = 0 ⇒
xn ∈N⇒ (xn)k = 0 for some k > 0 ⇒ x ∈N⇒ x̄ = 0. □

The ideal N is called the nilradical of A. The following proposition gives an alternative
definition of N:
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Proposition 1.8. The nilradical of A is the intersection of all the prime ideals of A.

Proof. Let N′ denote the intersection of all the prime ideals of A. If f ∈ A is nilpotent
and if p is a prime ideal, then f n = 0 ∈ p for some n > 0, hence f ∈ p (because p is prime).
Hence f ∈N′.

Conversely, suppose that f is not nilpotent. LetΣ be the set of ideals a with the property

n > 0 ⇒ f n ∉ a.

The Σ is not empty because 0 ∈ Σ. As in (1.3) Zorn’s lemma can be applied to the set
Σ, ordered by inclusion, and therefore Σ has a maximal element. Let p be a maximal
element of Σ. Let x, y ∉ p. Then the ideals p+ (x),p+ (y) strictly contain p and therefore
do not belong to Σ; hence

f m ∈ p+ (x), f n ∈ p+ (y)

for some m,n. It follows that f m+n ∈ p+ (x y), hence the ideal p+ (x y) is not in Σ and
therefore x y ∉ p. Hence we have a prime ideal p such that f ∉ p, so that f ∉N′. □

The Jacobson radical R of A is defined to be the intersection of all the maximal ideals of
A. It can be characterized as follows:

Proposition 1.9. x ∈R⇔ 1−x y is a unit in A for all y ∈ A.

Proof. ⇒ : Suppose 1−x y is not a unit. By (1.5) it belongs to some maximal ideal m; but
x ∈R⊂m, hence x y ∈m and therefore 1 ∈m, which is absurd.

⇐ : Suppose x ∉m for some maximal ideal m. Then m and x generate the unit ideal (1),
so that we have u + x y = 1 for some u ∈ m and some y ∈ A. Hence 1− x y ∈ m and is
therefore not a unit. □

1.6. Operations on ideals. If a,b are ideals in a ring A, their sum is the set of all x + y
where x ∈ a and y ∈ b. It is the smallest ideal containing a and b. More generally, we may
define the sum

∑
i∈I ai of any family (possibly infinite) of ideals ai of A; its elements are

all the sums
∑

xi , where xi ∈ ai for all i ∈ I and almost all of the xi (i.e., all but a finite
set) are zero. It is the smallest ideal of A which contains all the ideals ai .

The intersection of any family (ai )i∈I of ideals is an ideal. Thus the ideals of A form a
complete lattice with respect to inclusion.

The product of two ideals a,b in A is the ideal ab generated by all products x y , where
x ∈ a and y ∈ b. It is the set of all finite sums

∑
xi yi where each xi ∈ a and yi ∈ b. Similarly

we define the product of any finite family of ideals. In particular the powers an(n > 0) of
an ideal a are defined; conventionally, a0 = (1). Thus an(n > 0) is the ideal generated by
all products x1x2 · · ·xn in which each factor xi belongs to a.

Examples. 1) If A = Z,a = (m),b = (n) then a+ b is the ideal generated by the gcd of
m and n; a∩b is the ideal generated by their lcm; and ab = (mn). Thus (in this case)
ab= a∩b⇔ m,n are coprime.

2) A = k[x1, . . . , xn],a = (x1, . . . , xn) = ideal generated by x1, . . . , xn . Then am is the set of
all polynomials with no terms of degree < m.

The three operations so far defined (sum, intersection, product) are all commutative
and associative. Also there is the distributive law

a(b+ c) = ab+ac.
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In the ring Z, ∩ and + are distributive over each other. This is not the case in general,
and the best we have in this direction is the modular law

a∩ (b+ c) = a∩b+a∩ c if a⊃ b or a⊃ c.

Again, in Z, we have (a+b)(a∩b) = ab; but in general we have only (a+b)(a∩b) ⊂ ab;
(since (a+b)(a∩b) = a(a∩b)+b(a∩b) ⊂ ab). Clearly ab⊂ a∩b, hence

a∩b= ab provided a+b= (1).

Two ideals a,b are said to be coprime (or comaximal) if a+b = (1). Thus for coprime
ideals we have a∩b = ab. Clearly two ideals a,b are coprime if and only if there exist
x ∈ a and y ∈ b such that x + y = 1.

Let A1, . . . , An be rings. Their direct product

A =
n∏

i=1
Ai

is the set of all sequences x = (x1, . . . , xn) with xi ∈ Ai (1 ≤ i ≤ n) and componentwise
addition and multiplication. A is a commutative ring with identity element (1,1, . . . ,1).
We have projections pi : A → Ai defined by pi (x) = xi ; they are ring homomorphisms.

Let A be a ring and a1, . . . ,an ideals of A. Define a homomorphism

φ : A →
n∏

i=1
(A/ai )

by the rule φ(x) = (x +a1, . . . , x +an).

Proposition 1.10.

(1) If ai ,a j are coprime whenever i ̸= j , then
∏
ai =⋂

ai .
(2) φ is surjective ⇔ ai ,a j are coprime whenever i ̸= j .
(3) φ is injective ⇔⋂

ai = (0).

Proof. (1) by induction on n. The case n = 2 is dealt with above. Suppose n > 2 and the
result true for a1, . . . ,an−1, and let b=∏n−1

i=1 ai =⋂n−1
i=1 ai . Since ai +an = (1) (1 ≤ i ≤ n−1)

we have equations xi + yi = 1 (xi ∈ ai , yi ∈ an), and therefore
n−1∏
i=1

xi =
n−1∏
i=1

(1− yi ) ≡ 1 (mod an).

Hence an +b= (1) and so
n∏

i=1
ai = ban = b∩an =

n⋂
i=1

ai .

(2) ⇒ : Let us show for example that a1,a2 are coprime. There exists x ∈ A such that
φ(x) = (1,0, . . . ,0); hence x ≡ 1 (mod a1) and x ≡ 0 (mod a2), so that

1 = (1−x)+x ∈ a1 +a2.

(2) ⇐ : It is enough to show, for example, that there is an element x ∈ A such that φ(x) =
(1,0, . . . ,0). Since a1 + ai = (1) (i > 1) we have equations ui + vi = 1 (ui ∈ a1, vi ∈ ai ).
Take x = ∏n

i=2 vi , then x = ∏
(1−ui ) ≡ 1 (mod a1), and x ≡ 0 (mod ai ), i > 1. Hence

φ(x) = (1,0, . . . ,0) as required.

(3) Clear, since
⋂
ai is the kernel of φ. □

The union a∪b of ideals is not in general an ideal.
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Proposition 1.11.

(1) Let p1, . . . ,pn be prime ideals and let a be an ideal contained in
⋃n

i=1pi . Then
a⊂ pi for some i .

(2) Let a1, . . . ,an be ideals and let p be a prime ideal containing
⋂n

i=1ai . Then p⊃ ai

for some i . If p=⋂n
i=1ai , then p= ai for some i .

Proof. (1) is proved by induction on n in the form

a ̸⊂ pi (1 ≤ i ≤ n) ⇒ a ̸⊂
n⋃

i=1
pi .

It is certainly true for n = 1. If n > 1 and it is true for n −1, then for each i there exists
xi ∈ a such that xi ∉ p j whenever j ̸= i . If for some i we have xi ∉ pi , we are through. If
not, then xi ∈ pi for all i . Consider the element

y =
n∑

i=1
x1x2 · · ·xi−1xi+1xi+2 · · ·xn ;

we have y ∈ a and y ∉ pi (1 ≤ i ≤ n). Hence a ̸⊂⋃n
i=1pi .

(2) Suppose p ̸⊃ ai for all i . Then there exist xi ∈ ai , xi ∉ p (1 ≤ i ≤ n), and therefore∏
xi ∈∏

ai ⊂⋂
ai ; but

∏
xi ∉ p (since p is prime). Hence p ̸⊃⋂

ai . Finally, if p=⋂
ai , then

p⊂ ai and hence p= ai for some i . □

If a,b are ideals in a ring A, their ideal quotient is

(a : b) = {x ∈ A : xb⊂ a}

which is an ideal. In particular, (0 : b) is called the annihilator of b and is also denoted
by Ann(b): it is the set of all x ∈ A such that xb = 0. In this notation the set of all zero-
divisors in A is

D = ⋃
x ̸=0

Ann(x).

If b is a principal ideal (x), we shall write (a : x) in place of (a : (x)).

Example. If A = Z,a= (m),b= (n), where say m = ∏
p pµp ,n = ∏

p pνp , then (a : b) = (q)
where q =∏

p pγp and

γp = max(µp −νp ,0) =µp −min(µp ,νp ).

Hence q = m/(m,n), where (m,n) is the gcd of m and n.

Exercise 1.12. (1) a⊂ (a : b)
(2) (a : b)b⊂ a
(3) ((a : b) : c) = (a : bc) = ((a : c) : b)
(4) (

⋂
i ai : b) =⋂

i (ai : b)
(5) (a :

∑
i bi ) =⋂

i (a : bi ).

If a is any ideal of A, the radical of a is

r (a) = {x ∈ A : xn ∈ a for some n > 0}.

If φ : A → A/a is the standard homomorphism, then r (a) =φ−1(NA/a) and hence r (a) is
an ideal by (1.7).

Exercise 1.13. (1) r (a) ⊃ a
(2) r (r (a)) = r (a)
(3) r (ab) = r (a∩b) = r (a)∩ r (b)
(4) r (a) = (1) ⇔ a= (1)
(5) r (a+b) = r (r (a)+ r (b))
(6) if p is prime, r (pn) = p for all n > 0.
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Proposition 1.14. The radical of an ideal a is the intersection of the prime ideals which
contain a.

Proof. Apply (1.8) to A/a. □

More generally, we may define the radical r (E) of any subset E of A in the same way. It is
not an ideal in general. We have r (

⋃
αEα) =⋃

α r (Eα), for any family of subsets Eα of A.

Proposition 1.15. D = set of zero-divisors of A =⋃
x ̸=0 r (Ann(x)).

Proof. D = r (D) = r (
⋃

x ̸=0 Ann(x)) =⋃
x ̸=0 r (Ann(x)). □

Example. If A = Z,a = (m), let pi (1 ≤ i ≤ r ) be the distinct prime divisors of m. Then
r (a) = (p1 · · ·pr ) =⋂r

i=1(pi ).

Proposition 1.16. Let a,b be ideals in a ring A such that r (a), r (b) are coprime. Then a,b
are coprime.

Proof. r (a+b) = r (r (a)+ r (b)) = r (1) = (1), hence a+b= (1) by (1.13). □

1.7. Extension and contraction. Let f : A → B be a ring homomorphism. If a is an ideal
of A, the set f (a) is not necessarily an ideal in B (e.g., let f be the embedding of Z in Q,
the field of rationals, and take a to be any non-zero ideal in Z.) We define the extension
ae of a to be the ideal B f (a) generated by f (a) in B : explicitly, ae is the set of all sums∑

yi f (xi ) where xi ∈ a, yi ∈ B .

If b is an ideal of B , then f −1(b) is always an ideal of A, called the contraction bc of b.
If b is prime, then bc is prime. If a is prime, then ae need not be prime (for example,
f : Z → Q,a ̸= 0; then ae = Q, which is not a prime ideal).

We can factorize f as follows:
A

p−→ f (A)
j−→B

where p is surjective and j is injective. For p the situation is very simple (1.1): there
is a one-to-one correspondence between ideals of f (A) and ideals of A which contain
Ker( f ), and prime ideals correspond to prime ideals. For j , on the other hand, the gen-
eral situation is very complicated. The classical example is from algebraic number the-
ory.

Example. Consider Z → Z[i ], where i =p−1. A prime ideal (p) of Z may or may not stay
prime when extended to Z[i ]. In fact Z[i ] is a principal ideal domain (because it has an
Euclidean algorithm) and the situation is as follows:

(1) (2)e = ((1+ i )2), the square of a prime ideal in Z[i ];
(2) If p ≡ 1 (mod 4) then (p)e is the product of two distinct prime ideals (for exam-

ple (5)e = (2+ i )(2− i ));
(3) If p ≡ 3 (mod 4) then (p)e is prime in Z[i ].

Of these, (2) is not a trivial result. It is effectively equivalent to a theorem of Fermat
which says that a prime p ≡ 1 (mod 4) can expressed, essentially uniquely, as a sum of
two integer squares (thus 5 = 22 +12,97 = 92 +42, etc.).

In fact the behaviour of prime ideals under extensions of this sort is one of the central
problems of algebraic number theory.

Proposition 1.17. Let f : A → B, a and b be as before. Then

(1) a⊂ aec , b⊃ bce ;
(2) bc = bcec , ae = aece
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(3) If C is the set of contracted ideals in A and if E is the set of extended ideals in B,
then C = {a | aec = a}, E = {b | bce = b} and a 7→ ae is a bijective map of C onto E,
whose inverse is b 7→ bc .

Proof. (1) is trivial, and (2) follows from (1).

(3) If a ∈C , then a= bc = bcec = aec ; conversely if a= aec then a is the contraction of ae .
Similarly for E . □

Exercise 1.18. If a1,a2 are ideals of A and if b1,b2 are ideals of B, then

(a1 +a2)e = ae
1 +ae

2, (b1 +b2)c ⊃ bc
1 +bc

2,

(a1 ∩a2)e ⊂ ae
1 ∩ae

2, (b1 ∩b2)c = bc
1 ∩bc

2,

(a1a2)e = ae
1a

e
2, (b1b2)c ⊃ bc

1b
c
2,

(a1 : a2)e ⊂ (ae
1 : ae

2), (b1 : b2)c ⊂ (bc
1 : bc

2),

r (a)e ⊂ r (ae ), r (b)c = r (bc ).

The set of ideals E is closed under sum and product, and C is closed under the other three
operations.

1.8. Exercises.

(1) Let x be a nilpotent element of a ring A. Show that 1+ x is a unit in A. Deduce
that the sum of a nilpotent element and a unit is a unit.

(2) Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x,
with coefficients in A. Let f = a0 +a1x +·· ·+an xn ∈ A[x]. Prove that
(a) f is a unit in A[x] ⇔ a0 is a unit in A and a1, . . . , an are nilpotent.

[If b0 +b1x + ·· · +bm xm is the inverse of f , prove by induction on r that
ar+1

n bm−r = 0. Hence show that an is nilpotent, and then use Ex. (1)]
(b) f is nilpotent ⇔ a0, a1, . . . , an are nilpotent.
(c) f is a zero-divisor ⇔ there exists a ̸= 0 in A such that a f = 0.

[Choose a polynomial g = b0+b1x+·· ·+bm xm of least degree m such that
f g = 0. Then anbm = 0, hence an g = 0 because an g annihilates f and has
degree < m). Now show by induction that an−r g = 0 (0 ≤ r ≤ n).]

(d) f is said to be primitive if (a0, a1, . . . , an) = (1). Prove that if f , g ∈ A[x], then
f g is primitive ⇔ f and g are primitive.

(3) Generalize the results of Exercise (2) to a polynomial ring A[x1, . . . , xn] in several
indeterminates.

(4) In the ring A[x], the Jacobson radical is equal to the nilradical.
(5) Let A be a ring and let A[[x]] be the ring of formal power series f = ∑∞

n=0 an xn

with coefficients in A. Show that
(a) f is a unit in A[[x]] ⇔ a0 is a unit in A.
(b) If f is nilpotent, then an is nilpotent for all n ≥ 0. Is the converse true? (see

Chapter 7, Exercise (2))
(c) f belongs to the Jacobson radical of A[[x]] ⇔ a0 belongs to the Jacobson

radical of A.
(d) The contraction of a maximal ideal m of A[[x]] is a maximal ideal of A, and

m is generated by mc and x.
(e) Every prime ideal of A is the contraction of a prime ideal of A[[x]].

(6) A ring A is such that every ideal not contained in the nilradical contains a non
zero idempotent (that is, an element sucht that e2 = e ̸= 0). Prove that the nil-
radical and the Jacobson radical of A are equal.

(7) Let A be a ring in which every element x satisfies xn = x for some n > 1 (de-
pending on x). Show that every prime ideal in A is maximal.
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(8) Let A be a ring ̸= 0. Show that the set of prime ideals of A has minimal elements
with respect to inclusion.

(9) Let a be an ideal ̸= (1) in a ring A. Show that a = r (a) ⇔ a is an intersection of
prime ideals.

(10) Let A be a ring, N its nilradical. Show that the following are equivalent:
(a) A has exactly one prime ideal;
(b) every element of A is either a unit or nilpotent;
(c) A/N is a field.

(11) A ring A is Boolean if x2 = x for all x ∈ A. In a Boolean ring A, show that
(a) 2x = 0 for all x ∈ A;
(b) every prime ideal p is maximal, and A/p is a field of two elements;
(c) every finitely generated ideal in A is principal.

(12) A local ring contains no idempotent ̸= 0,1.

Construction of an algebraic closure of a field (E. Artin)

(13) Let K be a field and let Σ be the set of all irreducible monic polynomials f in
one indeterminate with coefficients in K . Let A be the polynomial ring over
K generated by indeterminates x f , one for each f ∈ Σ. Let a be the ideal of A
generated by the polynomials f (x f ) for all f ∈Σ. Show that a ̸= (1).

Let m be a maximal ideal of A containing a, and let K1 = A/m. Then K1 is
an extension field of K in which each f ∈ Σ has a root. Repeat the construction
with K1 in place of K , obtaining K2, and so on. Let L =⋃∞

n=1 Kn . Then L is a field
in which each f ∈ Σ splits completely into linear factors. Let K̄ be the set of all
elements of L which are algebraic over K . Then K̄ is an algebraic closure of K .

(14) In a ring A, let Σ be the set of all ideals in which every element is a zero-divisor.
Show that the set Σ has maximal elements and that every maximal element of Σ
is a prime ideal. Hence the set of zero-divisors in A is a union of prime ideals.

The prime spectrum of a ring

(15) Let A be a ring and let X be the set of all prime ideals of A. For each subset E of
A, let V (E) denote the set of all prime ideals of A which contain E . Prove that
(a) if a is the ideal generated by E , then V (E) =V (a) =V (r (a)).
(b) V (0) = X ,V (1) =∅.
(c) if (Ei )i∈I is any family of subsets of A, then

V (
⋃
i∈I

Ei ) = ⋂
i∈I

V (Ei )

(d) V (a∩b) =V (ab) =V (a)∪V (b) for any ideals a,b of A.
These results show that the sets V (E) satisfy the axioms for closed sets in a topo-
logical space. The resulting topology is called Zariski topology. The topological
space X is called the prime spectrum of A, and is written Spec(A).

(16) Draw pictures of Spec(Z), Spec(R), Spec(C[x]), Spec(R[x]), Spec(Z[x]).
(17) For each f ∈ A, let X f denote the complement of V ( f ) in X = Spec(A). The sets

X f are open. Show that they form a basis of open sets for the Zariski topology,
and that
(a) X f ∩Xg = X f g ;
(b) X f =∅⇔ f is nilpotent;
(c) X f = X ⇔ f is a unit;
(d) X f = Xg ⇔ r (( f )) = r ((g ));
(e) X is quasi-compact (that is, every open covering of X has a finite sub-

covering).
(f) More generally, each X f is quasi-compact.
(g) An open subset of X is quasi-compact if and only if it is a finite union of

sets X f
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The sets X f are called basic open sets of X = Spec(A).
[to prove (17e), remark that it is enough to consider a covering of X by basic
open sets X fi (i ∈ I ). Show that the fi generate the unit ideal and hence that
there is an equation of the form

1 = ∑
i∈J

gi fi (gi ∈ A)

where J is some finite subset of I . Then the X fi (i ∈ J ) cover X .]
(18) For psychological reasons it is sometimes convenient to denote a prime ideal of

A by a letter such as x or y when thinking of it as a point of X = Spec(A). When
thinking of x as a prime ideal of A, we denote it by px (logically, of course, it is
the same thing). Show that
(a) the set {x} is closed (we say that x is a closed point) in Spec(A) ⇔ px is max-

imal;
(b) {x} =V (px );
(c) y ∈ {x} ⇔ px ⊂ py ;
(d) X is a T0-space (this means that if x, y are distinct points of X , then either

there is a neighbourhood of x which does not contain y , or else there is a
neighbourhood of y which does not contain x).

(19) A topological space X is said to be irreducible if X ̸=∅ and if every pair of non-
empty open sets in X intersect, or equivalently if every non-empty open set is
dense in X . Show that Spec(A) is irreducible if and only if the nilradical of A is a
prime ideal.

(20) Let X be a topological space.
(a) If Y is an irreducible (Exercise (19)) subspace of X , then the closure Ȳ of Y

in X is irreducible.
(b) Every irreducible subspace of X is contained in a maximal irreducible sub-

space.
(c) The maximal irreducible subspaces of X are closed and cover X . They are

called the irreducible components of X . What are the irreducible compo-
nents of a Hausdorff space?

(d) If A is a ring and X = Spec(A), then the irreducible components of X are
the closed sets V (p), where p is a minimal prime ideal of A (Exercise (8)).

(21) Let φ : A → B be a ring homomorphism. Let X = Spec(A) and Y = Spec(B). If
q ∈ Y , then φ−1(q) is a prime ideal of A, i.e. a point of X . Hence φ induces a
mapping φ∗ : Y → X . Show that
(a) If f ∈ A then φ∗−1(X f ) = Yφ( f ), and hence that φ∗ is continuous.
(b) If a is an ideal of A, then φ∗−1(V (a)) =V (ae ).
(c) If b is an ideal of B , then φ∗(V (b)) =V (bc ).
(d) If φ is surjective, then φ∗ is a homeomorphism of Y onto the closed sub-

set V (Ker(φ)) of X . (In particular, Spec(A) and Spec(A/N) (where N is the
nilradical of A) are naturally homeomorphic.)

(e) If φ is injective, then φ∗(Y ) is dense in X . More precisely, φ∗(Y ) is dense in
X ⇔ Ker(φ) ⊂N.

(f) Let ψ : B →C be another ring homomorphism. Then (ψ◦φ)∗ =φ∗ ◦ψ∗.
(g) Let A be an integral domain with just one non-zero prime ideal p, and K

be the field of fractions of A. Let B = A/p×K . Define φ : A → B by φ(x) =
(x̄, x), where x̄ is the image of x in A/p. Show that φ∗ is bijective but not a
homeomorphism.

(22) Let A = ∏n
i=1 Ai be the direct product of rings Ai . Show that Spec(A) is the dis-

joint union of open (and closed) subspaces Xi , where Xi is canonically homeo-
morphic with Spec(Ai ).
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Conversely, let A be any ring. Show that the following statements are equiv-
alent:
(a) X = Spec(A) is disconnected.
(b) X ≃ A1 × A2 where neither of the rings A1, A2 is the zero ring.
(c) A contains an idempotent ̸= 0,1.

In particular, the spectrum of a local ring is always connected (Exercise (12)).
(23) Let A be a Boolean ring (Exercise (11)), and let X = Spec(A).

(a) For each f ∈ A, the set X f (Exercise (17)) is both open and closed in X .
(b) Let f1, . . . , fn ∈ A. Show that X f1 ∪·· ·∪X fn = X f for some f ∈ A.
(c) The sets X f are the only subsets of X which are both open and closed.

[Let Y ⊂ X be both open and closed. Since Y is open, it is the union of basic
open sets X f . Since Y is closed and X is quasi-compact (Exercise (17)), Y is
quasi-compact. Hence Y is a finite union of basic open sets; now use (23b)
above.]

(d) X is a compact Hausdorff space.
(24) Le L be a lattice, in which the sup and inf of two elements a,b are denoted by

a ∨b and a ∧b respectively. L is a Boolean lattice (or Boolean algebra) if
(a) L has a least element and a greatest element (denoted 0,1 respectively).
(b) Each of ∨,∧ is distributive over the other.
(c) Each a ∈ L has a unique complement a′ ∈ L such that a∨a′ = 1 and a∧a′ =

0.
(For example, the set of all subsets of a set, ordered by inclusion, is a Boolean
lattice.)

Let L be a Boolean lattice. Define addition and multiplication in L by the
rules

a +b = (a ∧b′)∨ (a′∧b), ab = a ∧b.

Verify that in this way L becomes a Boolean ring.
Conversely, starting from a Boolean ring A, define an ordering on A as fol-

lows: a ≤ b means that a = ab. Show that, with respect to this ordering, A is a
Boolean lattice. [The sup and inf are given by a ∨b = a +b +ab and a ∧b = ab,
and the complement by a′ = 1− a.] In this way we obtain a one-to-one corre-
spondence between (isomorphism classes of) Boolean rings and (isomorphism
classes) of Boolean lattices.

(25) From the last two exercises deduce Stone’s theorem, that every Boolean lattice
is isomorphic to the lattice of open-and-closed subsets of some compact Haus-
dorff topological space.

(26) Let A be a ring. The subspace of Spec(A) consisting of the maximal ideals of A,
with the induced topology, is called the maximal spectrum of A and is denoted
Max(A). For arbitrary commutative rings it does not have the nice functorial
properties of Spec(A) (see Exercise (21)), because the inverse image of a maxi-
mal ideal under a ring homomorphism need not be maximal.

Let X be a compact Hausdorff space and let C (X ) denote the ring of all real-
valued continuous function on X (add and multiply functions by adding and
multiplying their values). For each x ∈ X , let mx be the set of all f ∈ C (X ) such
that f (x) = 0. The ideal mx is maximal, because it is the kernel of the (surjective)
homomorphism C (X ) → R which takes f to f (x). If X̃ denotes Max(C (X )), we
have therefore defined a mapping µ : X → X̃ , namely x 7→mx .

We shall show that µ is a homeomorphism of X onto X̃ .
(a) Letm be any maximal ideal of C (X ), and let V =V (m) be the set of common

zeros of the functions in m: that is,

V = {x ∈ X : f (x) = 0 for all f ∈m}.
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Suppose that V is empty. Then for each x ∈ X there existe fx ∈m such that
fx (x) ̸= 0. Since fx is continuous, there is an open neighborhood Ux of x
in X on which fx does not vanish. By compactness a finite number of the
neighbourhoods, say Ux1 , . . . ,Uxn , cover X . Let

f = f 2
x1
+·· ·+ f 2

xn
.

Then f does not vanish at any point of X , hence is a unit in C (X ). But this
contradicts f ∈m, hence V is not empty.
Let x be a point of V . Then m ⊂mx , hence m =mx because m is maximal.
Hence µ is surjective.

(b) By Urysohn’s lemma (this is the only non-trivial fact required in the argu-
ment) the continuous functions separate the points of X . Hence x ̸= y ⇒
mx ̸=my , and therefore µ is injective.

(c) Let f ∈C (X ); let

U f = {x ∈ X : f (x) ̸= 0}

and let

Ũ f = {m ∈ X̃ : f ∉m}

Show that µ(U f ) = Ũ f . The open sets U f (resp. Ũ f ) from a basis of the
topology of X (resp. of X̃ ) and therefore µ is a homeomorphism.
Thus X can be reconstructed from the ring of functions C (X ).

Affine algebraic varieties

(27) Let k be an algebraically closed field and let

fα(t1, . . . , tn) = 0

be a set of polynomial equations in n variables with coefficients in k. The set
X of all points x = (x1, . . . , xn) ∈ kn which satisfy these equations is an affine
algebraic variety.

Consider the set of all polynomials g ∈ k[t1, . . . , tn] with the property that
g (x) = 0 for all x ∈ X . This set is an ideal I (X ) in the polynomial ring, and is
called the ideal of the variety. The quotient ring

P (X ) = k[t1, . . . , tn]/I (X )

is the ring of polynomial functions on X , because two polynomials g ,h define
the same polynomial function on X if and only if g −h vanishes at every point
of X , that is, if and only if g −h ∈ I (X ).

Let ξi be the image of ti in P (X ). The ξi (1 ≤ i ≤ n) are the coordinate func-
tions on X : if x ∈ X , then ξi (x) is the i th coordinate of x. P (X ) is generated as
a k-algebra by the coordinate functions, and is called the coordinate ring (or
affine algebra) of X .

As in Exercise (26), for each x ∈ X let mx be the ideal of all f ∈ P (X ) such
that f (x) = 0; it is a maximal ideal of P (X ). Hence , if X̃ = Max(P (X )), we have
defined a mapping µ : X → X̃ , namely x 7→mx .

It is easy to show that µ is injective: if x ̸= y , we must have xi ̸= yi for some
i (1 ≤ i ≤ n), and hence ξi − xi is in mx but not in my , so that mx ̸= my . What
is less obvious (but still true) is that µ is surjective. This is one form of Hilbert’s
Nullstellensatz (see Chapter 7).

(28) Let f1, . . . , fm be elements of k[t1, . . . , tn]. They determine a polynomial mapping
φ : kn → km : if x ∈ kn , the coordinates of φ(x) are f1(x), . . . , fm(x).

Let X ,Y be affine varieties in kn ,km respectively. A mapping φ : X → Y is
said to be regular if φ is the restriction to X of a polynomial mapping from kn

to km .
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If η is a polynomial function on Y , then η ◦φ is a polynomial function on
X . Hence φ induces a k-algebra homomorphism P (Y ) → P (X ), namely η 7→
η ◦φ. Show that in this way we obtain a one-to-one correspondence between
the regular mappings X → Y and the k-algebra homomorphisms P (Y ) → P (X ).

2. MODULES

One of the things which distinguishes the modern approach to Commutative Algebra is
the greater emphasis on modules, rather than just ideals. The extra elbow-room that this
gives makes for greater clarity and simplicity. For instance, an ideal a and its quotient
ring A/a are both examples of modules and so, to a certain extent, can be treated on
an equal footing. In this chapter we give the definition and elementary properties of
modules. We also give a brief treatment of tensor products, including a discussion of
how they behave for exact sequences.

2.1. Modules and module homomorphisms. Let A be a ring (commutative, as always).
An A-module is an abelian group M (written additively) on which A acts linearly: more
precisely, it is a pair (M ,µ), where M is an abelian group andµ is a mapping of A×M into
M such that, if we write ax for µ(a, x) (a ∈ A, x ∈ M), the following axioms are satisfied:

a(x + y) = ax +ay,

(a +b)x = ax +by,

(ab)x = a(bx),

1x = x (a,b ∈ A; x, y ∈ M).

(Equivalently, M is an abelian group together with a ring homomorphism A → E(M),
where E(M) is the ring of endomorphisms of the abelian group M .)

The notion of a module is a common generalization of several familiar concepts, as the
following examples show:

Examples. 1) An ideal a of A is an A-module. In particular A itself is an A-module.

2) If A is a field k, then A-module = k-vector space.

3) A = Z, then Z-module = abelian group (define nx to be x +·· ·+x).

4) A = k[x] where k is a field; an A module is a k-vector space with a linear transforma-
tion.

5) G = finite group, A = k[G] = group-algebra of G over the field k (thus A is not com-
mutative, unless G is). Then A-module = k-representation of G .

Let M , N be A-modules. A mapping f : M → N is an A-module homomorphism (or is
A-linear) if

f (x + y) = f (x)+ f (y))

f (ax) = a · f (x)

for all a ∈ A and all x, y ∈ M . Thus f is a homomorphism of abelian groups which com-
mutes with the action of each a ∈ A. If A is a field, an A-module homomorphism is the
same thing as a linear transformation of vector spaces.

The composition of A-module homomorphisms is again an A-module homomorphism.
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The set of all A-module homomorphisms from M to N can be turned into an A-module
as follows: we define f + g and a f by the rules

( f + g )(x) = f (x)+ g (x)

(a f )(x) = a · f (x)

for all x ∈ M . It is a trivial matter to check that the axioms for an A-module are satisfied.
This A-module is denoted by HomA(M , N ) (or just Hom(M , N ) if there is no ambiguity
about the ring A).

Homomorphisms u : M ′ → M and v : N → N ′′ induce mappings

ū : Hom(M , N ) → Hom(M ′, N ) and v̄ : Hom(M , N ) → Hom(M , N ′′)

defined as follows
ū( f ) = f ◦u, v̄( f ) = v ◦ f .

These mappings are A-module homomorphisms.

For any module M there is a natural isomorphism Hom(A, M) ≃ M : any A-module ho-
momorphism f : A → M is uniquely determined by f (1), which can be any element of
M .

2.2. Submodules and quotient modules. A submodule M ′ of M is a subgroup of M
which is closed under multiplication by elements of A. The abelian group M/M ′ then
inherits an A-module structure from M , defined by a(x +M ′) = ax +M ′. The A-module
M/M ′ is the quotient of M by M ′. The natural map of M onto M/M ′ is an A-module
homomorphism. There is a one-to-one order-preserving correspondence between sub-
modules of M which contain M ′, and submodules of M ′′ = M/M ′ (just as for ideals: the
statement for ideals is a special case).

If M → N is an A-module homomorphism, the kernel of f is the set

Ker( f ) = {x ∈ M : f (x) = 0}

and is a submodule of M . The image of f is the set

Im( f ) = f (M)

and is a submodule of N . The cokernel of f is

Coker( f ) = N /Im( f )

which is a quotient module of N .

If M ′ is a submodule of M such that M ′ ⊂ Ker( f ), then f gives rise to a homomorphism
f̄ : M/M ′ → N , defined as follows: if x̄ ∈ M/M ′ is the image of x ∈ M , then f̄ (x̄) = f (x).
The kernel of f̄ is Ker( f )/M ′. The homomorphism f̄ is said to be induced by f . In
particular, taking M ′ = Ker( f ), we have an isomorphism of A-modules

M/Ker( f ) ≃ Im( f ).

2.3. Operations on submodules. Most of the operations on ideals considered in sec-
tion 1.6 have their counterpart for modules. Let M be an A-module and let (Mi )i∈I be
a family of submodules of M . Their sum

∑
Mi is the set of all (finite) sums

∑
xi , where

xi ∈ Mi for all i ∈ I , and almost all the xi (that is, all but a finite number) are zero.
∑

Mi

is the smallest submodule of M which contains all the Mi .

The intersection
⋂

Mi is again a submodule of M . Thus the submodules of M form a
complete lattice with respect to inclusion.
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Proposition 2.1.

(1) If L ⊃ M ⊃ N are A-modules, then

(L/N )/(M/N ) ≃ L/M .

(2) If M1, M2 are submodules of M, then

(M1 +M2)/M1 ≃ M2/(M1 ∩M2).

Proof. (1) Define θ : L/N → L/M by θ(x+N ) = x+M . Then θ is a well-defined A-module
homomorphism of L/N onto L/M , and its kernel is M/N ; hence (1).

(2) The composite homomorphism M2 → M1+M2 → (M1+M2)/M1 is surjective, and its
kernel is M1 ∩M2; hence (2). □

We cannot in general define the product of two submodules, but we can define the prod-
uct aM , where a is an ideal and M is an A-module; it is the set of all finite sums

∑
ai xi

with ai ∈ a, xi ∈ M , and is a submodule of M .

If N ,P are submodules of M , we define (N : P ) to be the set of all a ∈ A such that aP ⊂ N ;
it is an ideal of A. In particular, (0 : M) is the set of all a ∈ A such that aM = 0; this ideal
is called the annihilator of M and is also denoted by Ann(M). If a ⊂ Ann(M), we may
regard M as an A/a-module, as follows: if ā ∈ A/a is represented by a ∈ A, define āx
to be ax (x ∈ M): this is independent of the choice of the representative a of ā, since
aM = 0.

An A-module is faithful if Ann(M) = 0. If Ann(M) = a, then M is faithful as an A/a-
module.

Exercise 2.2. 1) Ann(M +N ) = Ann(M)∩ Ann(N )
2) (N : P ) = Ann((N +P )/N )

If x is an element of M , the set of all multiples ax (a ∈ A) is a submodule of M , de-
noted by Ax or (x). If M = ∑

i∈I Axi , the xi are said to be a set of generators of M ; this
means that every element of M can be expressed (not necessarily uniquely) as a finite
linear combination of the xi with coefficients in A. An A-module M is said to be finitely
generated if it has a finite set of generators.

2.4. Direct sum and product. If M , N are A-modules, their direct sum M ⊕N is the set
of all pairs (x, y) with x ∈ M , y ∈ N . This is an A-module if we define addition and scalar
multiplication in the obvious way:

(x1, y1)+ (x2, y2) = (x1 +x2, y1 + y2)

a(x, y) = (ax, ay).

More generally, if (Mi )i∈I is any family of A-modules, we can define their direct sum⊕
i∈I Mi ; its elements are families (xi )i∈I such that xi ∈ Mi for each i ∈ I and almost all

xi are 0. If we drop the restriction on the number of non-zero x’s we have the direct
product

∏
i∈I Mi . Direct sum and direct product are therefore the same if the index set I

is finite, but not otherwise, in general.

Suppose that the ring A is a direct product
∏n

i=1 Ai (Section 1.6). Then the set of all
elements of A of the form

(0, . . . ,0, ai ,0, . . . ,0)

with ai ∈ Ai is an ideal ai of A (it is not a subring—except in trivial cases—because it
does not contain the identity element of A). The ring A, considered as an A-module, is
the direct sum of the ideals a1, . . . ,an . Conversely, given a module decomposition

A = a1 ⊕·· ·⊕an
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of A as a direct sum of ideals, we have

A ≃
n∏

i=1
(A/bi )

where bi =⊕
j ̸=i a j . Each ideal ai is a ring (isomorphic to A/bi ). The identity element ei

of ai is an idempotent in A, and ai = (ei ).

2.5. Finitely generated modules. A free A-module is one which is isomorphic to an A-
module of the form

⊕
i∈I Mi , where each Mi ≃ A (as an A-module). The notation A(I ) is

sometimes used. A finitely generated free A-module is therefore isomorphic to A⊕·· ·⊕A
(n summands), which is denoted An . (Conventionally, A0 is the zero module, denoted
by 0)

Proposition 2.3. M is a finitely generated A-module ⇔ M is isomorphic to a quotient of
An for some integer n > 0.

Proof. ⇒: Let x1, . . . , xn generate M . Define φ : An → M by φ(a1. . . . , an) = a1x1 + ·· ·+
an xn . Then φ is an A-module homomorphism onto M , and therefore M ≃ An/Ker(φ).

⇐: We have an A-module homomorphismφ of An onto M . If ei = (0, . . . ,0,1,0, . . . ,0) (the
1 being in the i th place), then the ei (1 ≤ i ≤ n) generate An , hence the φ(ei ) generate
M . □

Proposition 2.4. Let M be a finitely generated A-module, let a be an ideal of A, and let φ
be an A-module endomorphism of M such thatφ(M) ⊂ aM. Thenφ satisfies an equation
of the form

φn +a1φ
n−1 +·· ·+an = 0

where the ai are in a.

Proof. Let x1, . . . , xn be a set of generators of M . Then each φ(xi ) ∈ aM , so that we have
say φ(xi ) =∑n

j=1 ai j x j (1 ≤ i ≤ n; ai j ∈ a), i.e.,

n∑
j=1

(δi jφ−ai j )x j = 0

where δi j is the Kronecker delta. By mutliplying on the left by the adjoint of the matrix
(δi jφ− ai j ) it follows that det(δi jφ− ai j ) annihilates each xi , hence is the zero endo-
morphism of M . Expanding out the determinant, we have an equation of the required
form. □

Corollary 2.5. Let M be a finitely generated A-module and let a be an ideal of A such that
aM = M. Then there exists x ≡ 1 (mod a) such that xM = 0.

Proof. Take φ=identity, x = 1+a1 +·· ·+an in (2.4). □

Proposition 2.6 (Nakayama’s lemma). Let M be a finitely generated A-module and a an
ideal of A contained in the Jacobson radical R of A. Then aM = M implies M = 0.

First proof. By (2.5) we have xM = 0 for some x ≡ 1 (mod R). By (1.9) x is a unit in A,
hence M = x−1xM = 0.

Second proof. Suppose M ̸= 0, and let u1, . . . ,un be a minimal set of generators of M .
Then un ∈ aM , hence we have an equation of the form un = a1u1 +·· ·+ anun with the
ai ∈ a. Hence

(1−an)un = a1u1 +·· ·+an−1un−1;

since an ∈ R, it follows from (1.9) that 1− an is a unit in A. Hence un belongs to the
submodule generated by u1, . . . ,un−1: contradiction. □
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Corollary 2.7. Let M be a finitely generated A-module, N a submodule of M, a ⊂R an
ideal. Then M = aM +N ⇒ M = N .

Proof. Apply (2.6) to M/N , observing that a(M/N ) = (aM +N )/N . □

Let A be a local ring, m its maximal ideal, k = A/m its residue field. Let M be a finitely
generated A-module. M/mM is annihilated by m, hence is naturally an A/m-module,
i.e., a k-vector space, and as such is finite-dimensional.

Proposition 2.8. Let xi (1 ≤ i ≤ n) be elements of M whose images in M/mM form a basis
of this vector space. Then the xi generate M.

Proof. Let N be the submodule of M generated by the xi . Then the composite map
N → M → M/mM maps N onto M/mM , hence N +mM = M , hence N = M by (2.7). □

2.6. Exact sequences. A sequence of A-modules and A-homomorphisms

(2.1) . . . −→ Mi−1
fi−→Mi

fi+1−→Mi+1 −→ . . .

is said to be exact at Mi if Im( fi ) = Ker( fi+1). The sequence is exact if it is exact at each
Mi . In particular:

0 → M ′ f−→M is exact ⇔ f is injective;(2.2)

M
g−→M ′′ → 0 is exact ⇔ g is surjective;(2.3)

0 → M ′ f−→M
g−→M ′′ → 0 is exact ⇔ f is injective, g is surjective(2.4)

and g induces an isomorphism of Coker( f ) = M/ f (M ′) onto M ′′

A sequence of type (2.4) is called a short exact sequence. Any long exact sequence (2.1)
can be split up into short exact sequences: if Ni = Im( fi ) = Ker( fi+1), we have short exact
sequences 0 → Ni → Mi → Ni+1 → 0 for each i .

Proposition 2.9.

(1) Let

(2.5) M ′ u−→M
v−→M ′′ → 0

be a sequence of A-modules and homomorphisms. Then the sequence (2.5) is
exact ⇔ for all A-modules N the sequence

(2.6) 0 → Hom(M ′′, N )
v̄−→Hom(M , N )

ū−→Hom(M ′, N )

is exact.
(2) Let

(2.7) 0 → N ′ u−→N
v−→N ′′

be a sequence of A-modules and homomorphisms. Then the sequence (2.7) is
exact ⇔ for all A-modules M the sequence

(2.8) 0 → Hom(M , N ′) ū−→Hom(M , N )
v̄−→Hom(M , N ′′)

is exact.

Proof. All four parts of this proposition are easy exercises. For example, suppose that
(2.6) is exact for all N . First of all, since v̄ is injective for all N it follows that v is surjective.
Next, we have ū ◦ v̄ = 0, that is that if v ◦u ◦ f = 0 for all f : M ′′ → N . Taking N to be M ′′
and f to be the identity mapping, it follows that v ◦u = 0, hence Im(u) ⊂ Ker(v). Next
take N = M/Im(u) and let φ : M → N be the projection. Then φ ∈ Ker(ū), hence there
exists ψ : M ′′ → N such that φ=ψ◦ v . Consequently Im(u) = Ker(φ) ⊃ Ker(v). □
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Proposition 2.10. Let

0 // M ′

f ′
��

u // M

f

��

v // M ′′

f ′′
��

// 0

0 // N ′
u′
// N

v ′
// N ′′ // 0

be a commutative diagram of A-modules and homomorphisms, with the rows exact.
Then there exists an exact sequence

(2.9) 0 → Ker( f ′) ū−→Ker( f )
v̄−→Ker( f ′′) d−→Coker( f ′) ū′−→Coker( f )

v̄ ′−→Coker( f ′′) → 0

in which ū, v̄ are restrictions of u, v, and ū′, v̄ ′ are induced by u′, v ′.

Proof. The boundary homomorphism d is defined as follows: if x ′′ ∈ Ker( f ′′), we have
x ′′ = v(x) for some x ∈ M , and v ′( f (x)) = f ′′(v(x)) = 0, hence f (x) ∈ Ker(v ′) = Im(u′),
so that f (x) = u′(y ′) for some y ′ ∈ N ′. Then d(x ′′) is defined to be the image of y ′ in
Coker( f ′). The verification that d is well-defined, and that the sequence (2.9) is exact, is
a straightforward exercise in diagram-chasing which we leave to the reader. □

Remark. (2.10) is a special case of the exact homology sequence of homological algebra.

Let C be a class of A-modules and let λ be a function on C with values in Z (or, more
generally, with values in an abelian group). The function λ is additive if, for each short
exact sequence (2.4) in which all the terms belong to C , we have λ(M ′)−λ(M)+λ(M ′′) =
0.

Example. Let A be a field k, and let C be the class of all finite-dimensional k-vector
spaces V . The V 7→ dimV is an additive function on C .

Proposition 2.11. Let 0 → M0 → M1 →···→ Mn → 0 be an exact sequence of A-modules
in which all the modules Mi and the kernels of all the homomorphisms belong to C . Then
for any additive function λ on C we have

n∑
i=0

(−1)iλ(Mi ) = 0

Proof. Split up the sequence into short exact sequences

0 → Ni → Mi → Ni+1 → 0

(N0 = Nn+1 = 0). Then we have λ(Mi ) = λ(Ni )+λ(Ni+1). Now take the alternative sum
of the λ(Mi ), and everything cancels out. □

2.7. Tensor product of modules. Let M , N ,P be three A-modules. A mapping f : M ×
N → P is said to be A-bilinear if for each x ∈ M the mapping y 7→ f (x, y) of N into P is
A-linear, and for each y ∈ N the mapping x 7→ f (x, y) of M into P is A-linear.

We shall construct an A-module T , called the tensor product of M and N , with the prop-
erty that the A bilinear mappings M × N → P are in a natural one-to-one correspon-
dence withe the A-linear mappings T → P , for all A-modules P . More precisely:

Proposition 2.12. Let M , N be A-modules. Then there exists a pair (T, g ) consisting of an
A-module T and an A-bilinear mapping g : M ×N → T , with the following property:

Given any A-module P and any A-bilinear mapping f : M ×N → P, there exists a unique
A-linear mapping f ′ : T → P such that f = f ′ ◦ g (in other words, every bilinear function
on M ×N factors through T ).

Moreover, if (T, g ) and (T ′, g ′) are two pairs with this property, then there exists a unique
isomorphism j : T → T ′ such that j ◦ g = g ′.
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Proof. Uniqueness. Replacing (P, f ) by (T ′, g ′) we get a unique j : T → T ′ such that
g ′ = j◦g . Interchanging the roles of T and T ′, we get j ′ : T ′ → T such that g = j ′◦g ′. Each
of the compositions j ◦ j ′, j ′ ◦ j must be the identity, and therefore j is an isomorphism.

Existence. Let C denote the free A-module A(M×N ). The elements are formal linear com-
binations of elements of M × N with coefficients in A, i.e. they are expressions of the
form

∑n
i=1 ai · (xi , yi ) (ai ∈ A, xi ∈ M , yi ∈ N ).

Let D be the submodule of C generated by all the elements of C of the following types:

(x +x ′, y)− (x, y)− (x ′, y)

(x, y + y ′)− (x, y)− (x, y ′)
(ax, y)−a · (x, y)

(x, ay)−a · (x, y)

Let T =C /D . For each basis element (x, y) of C , let x ⊗ y denote its image in T . Then T
is generated by the elements of the form x ⊗ y , and from our definitions we have

(x +x ′)⊗ y = x ⊗ y +x ′⊗ y, x ⊗ (y + y ′) = x ⊗ y +x ⊗ y ′

(ax)⊗ y = x ⊗ (ay) = a(x ⊗ y)

Equivalently, the mapping g : M ×N → T defined by g (x, y) = x ⊗ y is A-bilinear.

Any map f of M×N into an A-module P extends by linearity to an A-module homomor-
phism f̄ : C → P . Suppose in particular that f is A-bilinear. Then, from the definitions,
f̄ vanishes on all the generators of D , hence on the whole of D , and therefore induces a
well-defined A-homomorphism f ′ of T =C /D into P such that f ′(x ⊗ y) = f (x, y). The
mapping f ′ is uniquely defined by this condition, and therefore the pair (T, g ) satisfy
the conditions of the proposition. □

Remarks. 1) The module T constructed above is called the tensor product of M and
N , and is denoted by M ⊗A N , or just M ⊗N if there is no ambiguity about the ring A.
It is generated as an A-module by the products x ⊗ y . If (xi )i∈I , (y j ) j∈J are families of
generators of M , N repectively, then the elements xi ⊗ y j generate M ⊗N . In particular,
if M and N are finitely generated, so is M ⊗N .

2) The notation x ⊗ y is inherently ambiguous unless we specify the tensor product to
which it belongs. Let M ′, N ′ be submodules of M , N repectively, and let x ∈ M ′ and
y ∈ N ′. Then it can happen that x ⊗ y as an element of M ⊗N is zero whilst x ⊗ y as an
element of M ′⊗N ′ is non-zero. For example, take A = Z, M = Z, N = Z/2Z, and let M ′ be
the submodule 2Z of Z, whilst N ′ = N . Let x be the non-zero element of N and consider
2⊗ x. As an element of M ⊗ N , it is zero because 2⊗ x = 1⊗ 2x = 1⊗ 0 = 0. But as an
element of M ′⊗N ′ it is non-zero. See the example after (2.19) in section 2.9.

However, there is the following result:

Corollary 2.13. Let xi ∈ M , yi ∈ N be such that
∑

xi ⊗ yi = 0 in M ⊗N . Thene there exist
finitely generated submodules M0 of M and N0 of N such that

∑
xi ⊗ yi = 0 in M0 ⊗N0.

Proof. If
∑

xi ⊗ yi = 0 in M ⊗ N , then in the notation of the proof of (2.12) we have∑
(xi , yi ) ∈ D , and therefore

∑
(xi , yi ) is a finite sum of generators of D . Let M0 be the

submodule of M generated by the xi and all the elements of M which occurs as first
coordinates in these generators of D , and define N0 similarly. Then

∑
xi ⊗ yi = 0 as an

element of M0 ⊗N0. □

Remarks. 3) We shall never again need to use the construction of the tensor product
given in (2.12), and the reader may safely forget it if he prefers. What is essential to keep
in mind is the defining poperty of the tensor product.
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4) Instead of starting with bilinear mappings we could have started with multilinear
mappings f : M1 × ·· ·×Mr → P defined in the same way (i.e., linear in each variable).
Following through the proof of (2.12) we should end up with a multi-tensor product T =
M1 ⊗·· ·⊗Mr , generated by all products x1 ⊗·· ·⊗ xr (xi ∈ Mi ,1 ≤ i ≤ r ). The details may
safely be left to the reader; the result corresponding to (2.12) is

Proposition 2.14. Let M1, . . . , Mr be A-modules. Then there exists a pair (T, g ) consist-
ing of an A-module T and an A-multilinear mapping g : M1 × ·· · × Mr → T , with the
following property:

Given any A-module P and any A-multilinear mapping f : M1×·· ·×Mr → P, there exists
a unique A-linear mapping f ′ : T → P such that f = f ′ ◦ g .

Moreover, if (T, g ) and (T ′, g ′) are two pairs with this property, then there exists a unique
isomorphism j : T → T ′ such that j ◦ g = g ′.

There are various so-called canonical isomorphisms, some of which we state here:

Proposition 2.15. Let M , N ,P be A-modules. Then there exist unique isomorphisms

M ⊗N → N ⊗M(2.10)

(M ⊗N )⊗P → M ⊗ (N ⊗P ) → M ⊗N ⊗P(2.11)

(M ⊕N )⊗P → (M ⊗P )⊕ (N ⊗P )(2.12)

A⊗M → M(2.13)

such that, respectively,

x ⊗ y 7→ y ⊗x

(x ⊗ y)⊗ z 7→ x ⊗ (y ⊗ z) 7→ x ⊗ y ⊗ z

(x, y)⊗ z 7→ (x ⊗ z, y ⊗ z)

a ⊗x 7→ ax.

Proof. In each case the point is to show that the mappings so described are well de-
fined. The technique is to construct suitable bilinear or multilinear mappings, and use
the defining property (2.12) or (2.14) to infer the existence of homomorphisms of tensor
products. We shall prove half of (2.11) as an example of the method, and leave the rest
to the reader.

We shall construct homomorphisms

(M ⊗N )⊗P
f−→M ⊗N ⊗P

g−→(M ⊗N )⊗P

such that f ((x ⊗ y)⊗ z) = x ⊗ y ⊗ z and g (x ⊗ y ⊗ z) = (x ⊗ y)⊗ z for all x ∈ M , y ∈ N , z ∈ P .

To construct f , fix the element z ∈ P . The mapping (x, y) 7→ x ⊗ y ⊗ z (x ∈ M , y ∈ N ) is
bilinear in x and y and therefore induces a homomorphism fz : M⊗N → M⊗N⊗P such
that fz (x ⊗ y) = x ⊗ y ⊗ z. Next, consider the mapping (t , z) 7→ fz (t ) of (M ⊗N )×P into
M ⊗N ⊗P . This is bilinear in t and z and therefore induces a homomorphism

f : (M ⊗N )⊗P → M ⊗N ⊗P

such that f ((x ⊗ y)⊗ z) = x ⊗ y ⊗ z.

To construct g , consider the mapping (x, y, z) 7→ (x⊗y)⊗z of M ×N ×P into (M ⊗N )⊗P .
This is linear in each variable and therefore induces a homomorphism

g : M ⊗N ⊗P → (M ⊗N )⊗P

such that g (x ⊗ y ⊗ z) = (x ⊗ y)⊗ z

Clearly f ◦ g and g ◦ f are identity maps, hence f and g are isomorphisms. □
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Exercise 2.16. Let A,B be rings, let M be an A-module, P a B-module and N an (A,B)-
bimodule (that is, N is simultaneously an A-module and a B-module and the two struc-
ture are compatible in the sense that a(xb) = (ax)b for all a ∈ A,b ∈ B , x ∈ N . Then
M ⊗A N is naturally a B-module, N ⊗B P an A-module, and we have

(M ⊗A N )⊗B P ≃ M ⊗A (N ⊗B P )

Let f : M → M ′, g : N → N ′ be homomorphisms of A-modules. Define h : M × N →
M ′⊗N ′ by h(x, y) = f (x)⊗ g (y). It is easily checked that h is A-bilinear and therefore
induces an A-module homomorphism

f ⊗ g : M ⊗N → M ′⊗N ′

such that

( f ⊗ g )(x ⊗ y) = f (x)⊗ g (y) (x ∈ M , y ∈ N ).

Let f ′ : M ′ → M ′′ and g ′ : N ′ → N ′′ be homomorphisms of A-modules. Then clearly the
homomorphisms ( f ′◦ f )⊗(g ′◦g ) and ( f ′⊗g ′)◦( f ⊗g ) agree on all elements of the form
x ⊗ y in M ⊗N . Since these elements generate M ⊗N , it follows that

( f ′ ◦ f )⊗ (g ′ ◦ g ) = ( f ′⊗ g ′)◦ ( f ⊗ g )

2.8. Restriction and extension of scalars. Let A → B be a homomorphism of rings and
let N be a B-module. Then N has an A-module structure defined as follows: if a ∈ A and
x ∈ N , then ax is defined to be f (a)x. This A-module is said to be obtained from N by
restriction of scalars. In particular, f defines in this way an A-module structure on B .

Proposition 2.17. Suppose N is finitely generated as a B-module and that B is finitely
generated as an A-module. Then N is finitely generated as an A-module.

Proof. Let y1, . . . , yn generate N over B , and let x1, . . . , xm generate B as an A-module.
Then the mn products xi y j generate N over A. □

Now let M be an A-module. Since, as we have just seen, B can be regarded as an A-
module, we can form the A-module MB = B ⊗A M . In fact MB carries a B-module struc-
ture such that b(b′⊗x) = bb′⊗x for all b,b′ ∈ B and all x ∈ M . The B-module MB is said
to be obtained from M by extension of scalars.

Proposition 2.18. If M is finitely generated as an A-module, then MB is finitely generated
as a B-module.

Proof. If x1, . . . , xm generate M over A, then the 1⊗xi generate MB over B . □

2.9. Exactness properties of the tensor product. Let f : M × N → P be an A-bilinear
mapping. For each x ∈ M the mapping y 7→ f (x, y) of N into P is A-linear, hence f
gives rise to a mapping M → Hom(N ,P ) which is A-linear because f is linear in the
variable x. Conversely any A-homomorphism φ : M → HomA(N ,P ) defines a bilinear
map, namely (x, y) 7→ φ(x)(y). Hence the set S of A-bilinear mappings M × N → P is
in natural one-to-one correspondence with Hom(M ,Hom(N ,P )). On the other hand S
is in one-to-one correspondence with Hom(M ⊗N ,P ), by the defining property of the
tensor product. Hence we have a canonical isomorphism

(2.14) Hom(M ⊗N ,P ) ≃ Hom(M ,Hom(N ,P )).
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Proposition 2.19. Let

(2.15) M ′ f−→M
g−→M ′′ → 0

be an exact sequence of A-modules and homomoprhisms, and let N by any A-module.
Then the sequence

(2.16) M ′⊗N
f ⊗1−→M ⊗N

g⊗1−→M ′′⊗N → 0

(where 1 denotes the identity mapping an N ) is exact.

Proof. Let E denote the sequence (2.15), and let E ⊗N denote the sequence (2.16). Let
P be any A-module. Since (2.15) is exact, the sequence Hom(E ,Hom(N ,P )) is exact by
proposition (2.9); hence by (2.14) the sequence Hom(E ⊗N ,P ) is exact. By (2.9) again, it
follows that E ⊗N is exact. □

Remarks. 1) Let T (M) = M ⊗N and let U (P ) = Hom(N ,P ). Then (2.14) takes the form
Hom(T (M),P ) ≃ Hom(M ,U (P )) for all A-modules M and P . In the language of abstract
nonsense, the functor T is the left adjoint of U , and U is the right adjoint of T . The
proof of (2.19) shows that any functor which is the left adjoint is right exact. Likewise
any functor which is a right adjoint is left exact.

2) It is not in general true that, if M ′ → M → M ′′ is an exact sequence of A-modules and
homomorphisms, the sequence M ′⊗N → M ⊗N → M ′′⊗N obtained by tensoring with
an arbitrary A-module is exact.

Example. Take A = Z and consider the exact sequence 0 → Z
f−→Z, where f (x) = 2x for

all x ∈ Z. If we tensor with N = Z/2Z, the sequence 0 → Z⊗ N
f ⊗1−→Z⊗ N is not exact,

because for any x ⊗ y ∈ Z⊗N we have

( f ⊗1)(x ⊗ y) = 2x ⊗ y = x ⊗2y = x ⊗0 = 0

so that f ⊗1 is the zero mapping, whereas Z⊗N ̸= 0.

The functor TN : M 7→ M ⊗A N on the category of A-modules and homomorphisms is
therefore not in general exact. If TN is exact, that is to say if tensoring with N transforms
all exact sequences into exact sequenses, then N is said to be a flat A-module.

Proposition 2.20. The following are equivalent, for an A-module N :

(1) N is flat.
(2) If 0 → M ′ → M → M ′′ → 0 is any exact sequence of A-modules, the tensored se-

quence 0 → M ′⊗N → M ⊗N → M ′′⊗N → 0 is exact
(3) If f : M ′ → M is injective, then f ⊗1 : M ′⊗N → M ⊗N is injective.
(4) If f : M ′ → M is injective and M , M ′ are finitely generated, then f ⊗1 : M ′⊗N →

M ⊗N is injective.

Proof. (1) ⇔ (2): by splitting up long exact sequences into short exact sequences.

(2) ⇔ (3): by (2.19)

(3) ⇒ (4): clear

(4) ⇒ (3): Let f : M ′ → M be injective and let u =∑
x ′

i ⊗ yi ∈ Ker( f ⊗1), so that
∑

f (x ′
i )⊗

yi = 0 in M ⊗N . Let M ′
0 be the submodule of M ′ generated by the xi and let u0 denote∑

x ′
i ⊗ yi as an element of M ′

0 ⊗N . By (2.13) there exists a finitely generated submodule
M0 of M containing f (M ′

0) and such that
∑

f (x ′
i )⊗ yi = 0 as an element of M0 ⊗ N . If

f0 : M ′
0 → M0 is the restriction of f , this means that ( f0⊗1)(u0) = 0. Since M0 and M ′

0 are
finitely generated, f0 ⊗1 is injective and therefore u0 = 0, hence u = 0. □

Exercise 2.21. If f : A → B is a ring homomorphism and M is a flat A-module, then
MB = B ⊗A M is a flat B-module. (Use the canonical isomorphisms (2.15), (2.16).)
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2.10. Algebras. Let f : A → B be a ring homomorphism. If a ∈ A and b ∈ B , define a
product

ab = f (a)b.

This definition of scalar multiplication makes the ring B into an A-module (it is a par-
ticular example of restriction of scalars). Thus B has an A-module structure as well as a
ring structure, and these two structures are compatible in a sense which the reader will
be able to formulate for himself. The ring B , equipped with this A-module structure, is
said to be an A-algebra. Thus an A-algebra is, by definition, a ring B together with a ring
homomorphism f : A → B .

Remarks. 1) In particular, if A is a field K (and B ̸= 0) then f is injective by (1.2) and
therefore K can be canonically identified with its image in B . Thus a K -algebra (K a
field) is effectively a ring containing K as a subring.

2) Let A be any ring. Since A has an identity element there is a unique homomorphism
of the ring of integers Z into A, namely n 7→ n.1. Thus every ring is automatically a
Z-algebra.

Let f : A → B , g : A → C be two ring homomorphisms. An A-algebra homomorphism
h : B → C is a ring homomorphism which is also an A-module homomorphism. The
reader should verify that h is an A-algebra homomorphism if and only if h ◦ f = g .

A ring homomorphism f : A → B is finite, and B is a finite A-algebra, if B is finitely gen-
erated as an A-module. The homomorphism is of finite type, and B is a finitely generated
A-algebra, if there exists a finite set of elements x1, . . . , xn in B such that every element of
B can be written as a polynomial in x1, . . . , xn with coefficients in f (A); or equivalently if
there is an A-algebra homomorphism from the polynomial ring A[t1, . . . , tn] onto B .

A ring A is said to be finitely generated if it is finitely generated as a Z-algebra. This
means that there exist finitely many elements x1, . . . , xn in A such that every element of
A can be written as a polynomial in the xi with rational integer coefficients.

2.11. Tensor product of algebras. Let B , C be two A-algebras, f : A → B , g : A → C
the corresponding homomorphisms. Since B and C are A-modules we may form their
tensor product D = B ⊗A C , which is an A-module. We shall define a multiplication on
D . Consider the mapping B ×C ×B ×C → D defined by

(b,c,b′,c ′) 7→ bb′⊗ cc ′.

This is A-linear in each factor and therefore, by (2.14), induces an A-module homomor-
phism

B ⊗C ⊗B ⊗C → D

hence by (2.15) an A-module homomorphism

D ⊗D → D

and this in turn by (2.12) corresponds to an A-bilinear mapping

µ : D ×D → D

which is such that
µ(b ⊗ c,b′⊗ c ′) = bb′⊗ cc ′.

Of course, we could have written down this formula directly, but without some such
argument as we have given there would be no guarantee that µ was well-defined.

We have therefore defined a multiplication on the tensor product D = B ⊗A C ; for ele-
ments of the form b ⊗ c it is given by

(b ⊗ c)(b′⊗ c ′) = bb′⊗ cc ′,
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and in general by (∑
i

(bi ⊗ ci )
)(∑

j
(b′

j ⊗ c ′j )
)=∑

i , j
(bi b′

j ⊗ ci c ′j ).

The reader should check that with this multiplication D is a commutative ring, with
identity element 1⊗1. Furthermore, D is an A-algebra: the mapping a 7→ f (a)⊗ g (a) is
a ring homomorphism A → D .

In fact there is a commutative diagram of ring homomorphisms

A

g

��

f // B

u
��

C v
// D

in which u, for example, is defined by u(b) = b ⊗1.

2.12. Exercises.

(1) Show that (Z/mZ)⊗Z (Z/nZ) = 0 if m,n are coprime.
(2) Let A be a ring, a an ideal, M an A-module. Show that A/a⊗A M is isomorphic

to M/aM .
[Tensor the exact sequence 0 → a→ A → A/a→ 0 with M .]

(3) Let A be a local ring, M and N finitely generated A-modules. Prove that if
M ⊗N = 0, then M = 0 or N = 0.

[Let m be the maximal ideal, k = A/m the residue field. Let Mk = k ⊗A M ≃
M/mM by exercise (2). By Nakayama’s lemma, Mk = 0 ⇒ M = 0. But M ⊗A N =
0 ⇒ (M ⊗A N )k = 0 ⇒ Mk = 0 or Nk = 0, since Mk , Nk are vector spaces over a
field.]

(4) Let Mi (i ∈ I ) be any family of A-modules, and let M be their direct sum. Prove
that M is flat ⇔ each Mi is flat.

(5) Let A[x] be the ring of polynomials in one indeterminate over a ring A. Prove
that A[x] is a flat A-algebra. [Use Exercise (4)]

(6) For any A-module, let M [x] denote the set of all polynomials in x with coeffi-
cients in M , that is to say expressuions of the form

m0 +m1x +·· ·+mr xr (mi ∈ M).

Defining the product of an element of A[x] and an element of M [x] in the obvi-
ous way, show that M [x] is an A[x]-module.

Show that M [x] ≃ A[x]⊗A M .
(7) Let p be a prime ideal in A. Show that p[x] is a prime ideal in A[x]. If m is a

maximal ideal in A, is m[x] a mximal ideal in A[x]?
(8) (a) If M and N are flat A-modules, then so is M ⊗A N .

(b) If B is a flat A-algebra and N is a flat B-module, then N is flat as an A-
module.

(9) Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of A-modules. If M ′ and M ′′
are finitely generated, then so is M .

(10) Let A be a ring, a an ideal contained in the Jacobson radical of A; let M be an
A-module and N a finitely generated A-module, and let u : M → N be a homo-
morphism. If the induced homomorphism M/aM → N /aN is surjective, then
u is surjective.

(11) Let A be a ring ̸= 0. Show Am ≃ An ⇒ m = n.
[Let m be a maximal ideal of A and letφ : Am → An be an isomorphism. Then

1⊗φ : (A/m)⊗ Am → (A/m)⊗ An is an isomorphism between vector spaces of
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dimensions m and n over the field k = A/m. Hence m = n.] (Cf. Chapter 3,
Exercise (15).)

If φ : Am → An is surjective, then m ≥ n.
If φ : Am → An is injective, is it always the case that m ≤ n?

(12) Let M be a finitely generated A-module and φ : M → An a surjective homomor-
phism. Show that Ker(φ) is finitely generated.

[Let e1, . . . ,en be a basis of An and choose ui ∈ M such that φ(ui ) = ei (1 ≤ i ≤
n). Show that M is the direct sum of Ker(φ) and the submodule generated by
u1, . . . ,un .]

(13) Let f : A → B be a ring homomorphism, and let N be a B-module. Regarding N
as an A-module by restriction of scalars, form the B-module NB = B⊗A N . Show
that the homomorphism g : N → NB which maps y to 1⊗ y is injective and that
g (N ) is a direct summand of NB .

[Define p : NB → N by p(b ⊗ y) = by , and show that NB = Im(g )⊕Ker(p).]

Direct limits

(14) A partially ordered set I is said to be a directed set if for each pair i , j in I there
exists k ∈ I such that i ≤ k and j ≤ k.

Let A be a ring, let I be a directed set and let (Mi )i∈I be a family of A-modules
indexed by I . For each pair i , j in I such that i ≤ j , let µi j : Mi → M j be an A-
homomorphism, and suppose that the following axioms are satisfied:
(a) µi i is the identity mapping of Mi , for all i ∈ I ;
(b) µi k =µ j k ◦µi j whenever i ≤ j ≤ k.

Then the modules Mi and homomorphisms µi j are said to form a direct system
M= (Mi ,µi j ) over the directed set I .

We shall construct an A-module M called the direct limit of the direct sys-
tem M. Let C be the direct sum of the Mi , and identify each module Mi with
its canonical image in C . Let D be the submodule of C generated by all the
elements of the form xi −µi j (xi ) where i ≤ j and xi ∈ Mi . Let M = C /D , let
µ : C → M be the projection and let µi be the restriction of µ to Mi .

The module M , or more correctly the pair consisting of M and the family of
homomorphisms µi : Mi → M , is called the direct limit of the directed system
M, and is written lim−−→Mi . From the construction it is clear that µi = µ j ◦µi j

whenever i ≤ j .
(15) In the situation of Exercise (14), show that every element of M can be written in

the form µi (xi ) for some i ∈ I and some xi ∈ Mi .
Show also that if µi (xi ) = 0 then there exists j ≥ i such that µi j (xi ) = 0 in M j .

(16) Show that the direct limit is characterized (up to isomorphism) by the following
property. Let N be an A-module and for each i ∈ I let αi : Mi → N be an A-
module homomorphism such that αi = α j ◦µi j whenever i ≤ j . Then there
exists a unique homomorphism α : M → N such that αi =α◦µi for all i ∈ I .

(17) Let (Mi )i∈I be a family of submodules of an A-module, such that for each pair of
indices i , j in I there exists k ∈ I such that Mi +M j ⊂ Mk . Define i ≤ j to mean
Mi ⊂ M j and let µi j : Mi → M j be the embedding of Mi in M j . Show that

lim−−→Mi =
∑

Mi =
⋃

Mi .

In particular, any A-module is the direct limit of its finitely generated submod-
ules.

(18) Let M = (Mi ,µi j ),N = (Ni ,νi j ) be direct systems of A-modules over the same
directed set. Let M , N be the direct limits and µi : Mi → M , νi : Ni → N the
associated homomorphisms.

A homomorphism Φ : M → N is by definition a family of A-module homo-
morphisms φi : Mi → Ni such that φ j ◦µi j = νi j ◦φi whenever i ≤ j . Show that
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Φ defines a unique homomorphism φ : M → N such that φ◦µi = νi ◦φi for all
i ∈ I .

(19) A sequence of direct systems and homomorphisms

M→N→P

is exact if the corresponding sequence of modules and module homomorphisms
is exact for each i ∈ I . Show that the sequence M → N → P of direct limits is then
exact. [Use Exercise (15).]

Tensor products commute with direct limits

(20) Keeping the same notation as in Exercise (14), let N be any A-module. Then
(Mi ⊗ N ,µi j ⊗ 1) is a direct system; let P = lim−−→(Mi ⊗ N ) be its direct limit. For
each i ∈ I we have a homomorphism µi ⊗1 : Mi ⊗N → M ⊗N , hence by Exercise
(16) a homomorphism ψ : P → M ⊗N . Show that ψ is an isomorphism. so that

lim−−→(Mi ⊗N ) ≃ (lim−−→Mi )⊗N .

[For each I ∈ I , let gi : Mi × N → Mi ⊗ N be the canonical bilinear mapping.
Passing to the limit we obtain a mapping g : M × N → P . Show that g is A-
bilinear and hence defines a homomorphism φ : M ⊗N → P . Verify that φ ◦ψ
and ψ◦φ are identity mappings.]

(21) Let (Ai )i∈I be a family of rings indexed by a directed set I , and for each pair i ≤ j
in I let αi j : Ai → A j be a ring homomorphism, satisfying conditions (14a) and
(14b) of Exercise (14). Regarding each Ai as a Z-module we can form the direct
limit A = lim−−→ Ai . Show that A inherits a ring structure from the Ai so that the
mappings Ai → A are ring homomorphisms. The ring A is the direct limit of the
system (Ai ,αi j ).

If A = 0 prove that Ai = 0 for some i ∈ I . [Remember that all rings have iden-
tity elements!]

(22) Let (Ai ,αi j ) be a direct system of rings and let Ni be the nilradical of Ai . Show
that lim−−→Ni is the nilradical of lim−−→ Ai .

If each Ai is an integral domain, then lim−−→ Ai is an integral domain.
(23) Let (Bλ)λ∈Λ be a family of A-algebras. For each finite subset J ofΛ let B J denote

the tensor product (over A) of the Bλ for λ ∈ J . If J ′ is another finite subset
of Λ and J ⊂ J ′, there is a canonical A-algebra homomorphism B J → B J ′ . Let
B denote the direct limit of the rings B J as J runs through all finite subset of
Λ. The ring B has a natural A-algebra structure for which the homomorphisms
B J → B are A-algebra homomorphisms. The A-algebra B is the tensor product
of the family (Bλ)λ∈Λ.

Flatness and Tor

In these exercises it will be assumed that the reader is familiar with the defini-
tion and basic poperties of the Tor functor.

(24) If M is an A-module, the following are equivalent:
(a) M is flat;
(b) TorA

n (M , N ) = 0 for all n > 0 and all A-modules N ;
(c) TorA

1 (M , N ) = 0 for all A-modules N .
[To show (24a)⇒ (24b), take a free resolution of N and tensor it with M . Since

M is flat, the resulting sequence is exact and therefore its homology groups,
which are the TorA

n (M , N ), are zero for n > 0.
To show (24c)⇒ (24a), let 0 → N ′ → N → N ′′ → 0 be an exact sequence. Then,

from the Tor exact sequence,

Tor1(M , N ′′) → M ⊗N ′ → M ⊗N → M ⊗N ′′ → 0

is exact. Since Tor1(M , N ′′) = 0 it follows that M is flat]
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(25) Let 0 → N ′ → N → N ′′ → 0 be an exact sequence, with N ′′ flat. Then N ′ is flat
⇔ N is flat. [Use Exercise (24) and the Tor exact sequence.]

(26) Let N be an A-module. Then N is flat ⇔ Tor1(A/a, N ) = 0 for all finitely gener-
ated ideals a in A.

[Show first that N is flat if Tor1(M , N ) = 0 for all finitely generated A-modules
M , by using (2.20). If M is finitely generated, let x1, . . . , xn be a set of generators
of M , and let Mi be the submodule generated by x1, . . . , xi . By considering the
successvie quotients Mi /Mi−1 and using Exercise (25), deduce that N is flat if
Tor1(M , N ) = 0 for all cyclic A-modules M , i.e., all M generated by a single ele-
ment, and therefore of the form A/a for some ideal a. Finally use (2.20) again to
reduce to the case where a is a finitely generated ideal.]

(27) A ring A is absolutely flat if every A-module is flat. Prove that the following are
equivalent:
(a) A is absolutely flat.
(b) Every principal ideal is idempotent.
(c) Every finitely generated ideal is a direct summand of A.

[(27a) ⇒ (27b). Let x ∈ A. Then A/(x) is a flat A-module, hence in the diagram

(x)⊗ A

��

β // (x)⊗ A/(x)

α

��
A // A/(x)

the mappingα is injective. Hence Im(β) = 0, hence (x) = (x2). (27b) ⇒ (27c). Let
x ∈ A. Then x = ax2 for some a ∈ A, hence e = ax is idempotent and we have
(e) = (x). Now if e, f are idempotents, then (e, f ) = (e + f − e f ). Hence every
finitely generated ideal is principal, and generated by an idempotent e, hence is
a direct summand because A = (e)⊕ (1− e). (27c) ⇒ (27a). Use the criterion of
Exercise (26).]

(28) A Boolean ring is absolutely flat. The ring of Chapter 1, Exercise (7) is absolutely
flat. Every homomorphic image of an absolutely flat ring is absolutely flat. If a
local ring is absolutely flat, then it is a field.

If A is absolutely flat, every non-unit in A is a zero-divisor.

3. RINGS AND MODULES OF FRACTIONS

The formation of rings of fractions and the associated process of localization are per-
haps the most important technical tools in commutative algebra. They correspond in
the algebro-geometric picture to concentrating attention on an open set or near a point,
and the importance of these notions should be self-evident. This chapter gives the def-
initions and simple properties of the formation of fractions.

The procedure by which one constructs the rational field Q from the ring of integers Z
(and embeds Z in Q) extends easily to any integral domain A and produces the field of
fractions of A. The construction consists in taking all ordered pairs (a, s) where a, s ∈ A
and s ̸= 0, and setting an equivalence relation between such pairs:

(a, s) ≡ (b, t ) ⇔ at −bs = 0.

This works only if A is an integral domain, because the verification that the relation is
transitive involves canceling, i.e. the fact that A has no zero-divisor ̸= 0. However, it can
be generalized as follows:
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Let A be any ring. A multiplicatively closed subset of A is a subset S of A such that 1 ∈ S
and S ic closed under multiplication: in other words S is a subsemigroup of the multi-
plicative semigroup of A. Define a relation ≡ on A×S as follows:

(a, s) ≡ (b, t ) ⇔ (at −bs)u = 0 for some u ∈ S.

Clearly this relation is reflexive and symmetric. To show that it is transitive, suppose
(a, s) ≡ (b, t ) and (b, t ) ≡ (c,u). Then there exist v, w in S such that (at −bs)v = 0 and
(bu − ct )w = 0. Eliminate b from these two equations and we have (au − cs)t v w = 0.
Since S is closed under multiplication, we have t v w ∈ S, hence (a, s) ≡ (c,u). Thus we
have an equivalence relation. Let a/s denote the equivalence class of (a, s), and let S−1 A
denote the set of equivalence classes. We put a ring structure on S−1 A by defining addi-
tion and multiplication of these fractions a/s in the same way as in elementary algebra:
that is,

(a/s)+ (b/t ) = (at +bs)/st ,

(a/s)(b/t ) = ab/st .

Exercise. Verify that these definitions are independent of the choices of representatives
(a, s) and (b, t ), and that S−1 A satisfies the axioms of a commutative ring with identity.

We also have a ring homomorphism f : A → S−1 A defined by f (x) = x/1. This is not in
general injective.

Remark. If A is an integral domain and S = A− {0}, then S−1 A is the field of fractions of
A.

The ring S−1 A is called the ring of fractions of A with respect to S. It has a universal
property:

Proposition 3.1. Let g : A → B be a ring homomorphism such that g (s) is a unit in B for
all s ∈ S. Then there exists a unique ring homomorphism h : S−1 A → B such that g = h◦ f .

Proof. Uniqueness. If h satisfies the conditions, then h(a/1) = h f (a) = g (a) for all a ∈ A;
hence, if s ∈ S,

h(1/s) = h
(
(s/1)−1)= h(s/1)−1 = g (s)−1

and therefore h(a/s) = h(a/1) ·h(1/s) = g (a)g (s−1), so that h is uniquely determined by
g .

Existence. Let h(a/s) = g (a)g (s)−1. Then h will clearly be a ring homomorphism pro-
vided that is is well-defined. Suppose then that a/s = a′/s′; then there exists t ∈ S such
that (as′−a′s)t = 0, hence (

g (a)g (s′)− g (a′)g (s)
)
g (t ) = 0;

now g (t ) is a unit in B , hence g (a)g (s)−1 = g (a′)g (s′)−1. □

The ring S−1 A and the homomorphism f : A → S−1 A have the following properties:

(1) s ∈ S ⇒ f (s) is a unit in S−1 A;
(2) f (a) = 0 ⇒ as = 0 for some s ∈ S;
(3) Every element of S−1 A is of the form f (a) f (s)−1 for some a ∈ A and some s ∈ S.

Conversely, these three properties determine the ring S−1 A up to isomorphism. Pre-
cisely:

Corollary 3.2. If g : A → B is a ring homomorphism such that

(1) s ∈ S ⇒ g (s) is a unit in B;
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(2) g (a) = 0 ⇒ as = 0 for some s ∈ S;
(3) Every element of B is of the form g (a)g (s)−1

Then there is a unique isomorphism h : S−1 A → B such that g = h ◦ f .

Proof. By (3.1) we have to show that h : S−1 A → B , defined by

h(a/s) = g (a)g (s−1)

(this definition uses (1)) is an isomorphism. By (3), h is surjective. To show h is injective,
look at the kernel of h: if h(a/s) = 0, then g (a) = 0, hence by (2) we have at = 0 for some
t ∈ S, hence a/s = 0 in S−1 A. □

Examples. 1) Let p be a prime ideal of A. Then S = A −p is multiplicatively closed (in
fact A − p is multiplicatively closed ⇔ p is prime). We write Ap for S−1 A in this case.
The elements a/s with a ∈ p form an ideal m in Ap. If b/t ∉m, then b ∉ p, hence b ∈ S
and therefore b/t is a unit in Ap. It follows that if a is an ideal in Ap and a ̸⊂m, then a
contains a unit and is therefore the whole ring. Hence m is the only maximal ideal in Ap;
in other words, Ap is a local ring.

The process of passing from A to Ap is called localization at p.

2) S−1 A is the zero ring ⇔ 0 ∈ S.

3) Let f ∈ A and let S = { f n}n≥0. We write A f for S−1 A in this case.

4) Let a be any ideal in A, and let S = 1+ a = set of all 1+ x where x ∈ a. Clearly S is
multiplicatively closed.

5) Special cases of 1) and 3):

a) A = Z, p = (p), p a prime number; Ap = set of all rational numbers m/n where n
is prime to p; if f ∈ Z and f ̸= 0, then A f is the set of all rational nummbers whose
denominator is a power of f .

b) A = k[t1, . . . , tn], where k is a field and the ti are independent indeterminates, p a
prime ideal in A. Then Ap is the ring of all rational functions f /g , where g ∉ p. If V is
the variety defined by the ideal p, that is to say the set of all x = (x1, . . . , xn) ∈ kn such
that f (x) = 0 whenever f ∈ p, then (provided k is infinite) Ap can be identified with the
ring of all rational functions on kn which are defined at almost all points of V ; it is the
local ring of kn along the variety V . This is the prototype of the local rings which arise
in algebraic geometry.

The construction of S−1 A can be carried through with an A-module M in place of the
ring A. Define a relation ≡ on M ×S as follows:

(m, s) ≡ (m′, s′) ⇔ ∃ t ∈ S such that t (sm′− s′m) = 0.

As before, this is an equivalence relation. Let m/s denote the equivalence class of the
pair (m, s), let S−1M denote the set of such fractions, and make S−1M into an S−1 A-
module with the obvious definitions of addition and scalar multiplication. As in Exam-
ple 1) and 3) above, we write Mp instead of S−1M when S = A−p (p prime) and M f when
S = { f n}n≥0.

Let u : M → N be an A-module homomorphism. Then it gives rise to an S−1 A-module
homomorphism S−1u : S−1M → S−1N , namely S−1u maps m/s to u(m)/s. We have
S−1(v ◦u) = (S−1v)◦ (S−1u).

Proposition 3.3. The operation S−1 is exact, i.e.,

M ′ f−→M
g−→M ′′ exact ⇒ S−1M ′S−1 f−→S−1M

S−1g−→S−1M ′′ exact.
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Proof. We have g ◦ f = 0, hence S−1g ◦S−1 f = S−1(0) = 0, hence Im(S−1 f ) ⊂ Ker(S−1g ).
To prove the reverse inclusion, let m/s ∈ Ker(S−1g ), then g (m)/s = 0 in S−1M ′′, hence
there exists t ∈ S such that t g (m) = 0 in M ′′. But t g (m) = g (tm) since g is an A-
module homomorphisms, hence tm ∈ Ker(g ) = Im( f ) and therefore tm = f (m′) for
some m′ ∈ M ′. Hemce in S−1M we have m/s = f (m′)/st = (S−1 f )(m′/st ) ∈ Im(S−1 f ).
Hence Ker(S−1g ) ⊂ Im(S−1 f ). □

In particular, it follows from (3.3) that if M ′ is a submodule, the mapping S−1M ′ → S−1M
is injective and therefore S−1M ′ can be regarded as a submodule of S−1M . With this
convention,

Corollary 3.4. Formation of fractions commutes with the formation of finite sums, finite
intersections and quotients. Precisely, if N ,P are submodules of an A-module M, then

(1) S−1(N +P ) = S−1N +S−1P
(2) S−1(N ∩P ) = S−1N ∩S−1P
(3) the S−1 A-modules S−1(M/N ) and S−1(M)/S−1(N ) are isomorphic.

Proof. (1) follows readily from the definitions and (2) is easy to verify: if y/s = z/t for
y ∈ N , z ∈ P, s, t ∈ S then u(t y − sz) = 0 for some u ∈ S, hence w = ut y = usz ∈ N ∩P , and
therefore y/s = w/stu ∈ S−1(N ∩P ). Consequently S−1N ∩S−1P ⊂ S−1(N ∩P ), and the
reverse inclusion is obvious.

(3) Apply S−1 to the exact sequence 0 → N → M → M/N → 0 □

Proposition 3.5. Let M be an A-module. Then the S−1 A-modules S−1M and S−1 A⊗A M
are isomorphic; more precisely, there exists a unique isomorphism f : S−1 A⊗A M → S−1M
for which

(3.1) f
(
(a/s)⊗m

)= am/s for all a ∈ A,m ∈ M , s ∈ S

Proof. The mapping S−1 A×A M → S−1M defined by

(a/s,m) 7→ am/s

is A-bilinear, and therefore by the universal poperty (2.12) of the tensor product induces
an A-homomorphism

f : S−1 A⊗A M → S−1M

satisfying (3.1). Clearly f is surjective, and it is uniquely defined by (3.1).

Let
∑

i (ai /si )⊗mi be any element of S−1 A⊗M . If s =∏
i si ∈ S, ti =∏

j ̸=i s j , we have∑
i

ai

si
⊗mi =

∑
i

ai ti

s
⊗m =∑

i

1

s
⊗ai ti m = 1

s
⊗∑

i
ai ti m,

so that every element of S−1 A⊗M is of the form (1/s)⊗m. Suppose that f
(
(1/s)⊗m

)= 0.
Then m/s = 0, hence tm = 0 for some t ∈ S, and therefore

1

s
⊗m = t

st
⊗m = 1

st
⊗ tm = 1

st
⊗0 = 0.

Hence f is injective and therefore an isomorphism. □

Corollary 3.6. S−1 A is a flat A-module.

Proof. (3.3), (3.5). □
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Proposition 3.7. If M , N are A-modules, there is a unique isomorphism of S−1 A-modules
f : S−1M ⊗S−1 A S−1N → S−1(M ⊗A N ) such that

f
(
(m/s)⊗ (n/t )

)= (m ⊗n)/st .

In particular, if p is any prime ideal, then

Mp⊗Ap Np ≃ (M ⊗A N )p

as Ap-modules.

Proof. Use (3.5) and the canonical isomorphisms of Chapter 2, (2.15). □

3.1. Local properties. A property P of a ring A (or of an A-module M) is said to be a
local poperty if the following is true:

A (or M) has P ⇔ Ap (or Mp) has P , for each prime ideal p of A. The following proposi-
tions give examples of local properties:

Proposition 3.8. Let M be an A-module. Then the following are equivalent:

(1) M = 0;
(2) Mp = 0 for all prime ideals p of A;
(3) Mm = 0 for all maximal ideals m of A.

Proof. Clearly (1) ⇒ (2) ⇒ (3). Suppose (3) satisfied and M ̸= 0. Let x be a non-zero
element of M , and let a = Ann(x); a is an ideal ̸= (1), hence is contained in a maximal
ideal m by (1.4). Consider x/1 ∈ Mm. Since Mm = 0 we have x/1 = 0, hence x is killed by
some element of A−m; but this is impossible since Ann(x) ⊂m. □

Proposition 3.9. Let φ : M → N be an A-homomorphism. Then the following are equiv-
alent:

(1) φ is injective;
(2) φp : Mp → Np is injective for each prime ideal p;
(3) φm : Mm → Nm is injective for each maximal ideal m.

Similarly with injective replaced by surjective throughout.

Proof. (1) ⇒ (2): 0 → M → N is exact, hence 0 → Mp → Np is exact, i.e., φp is injective.

(2) ⇒ (3) because a maximal ideal is prime.

(3) ⇒ (1). Let M ′ = Ker(φ), then the sequence 0 → M ′ → M → N is exact, hence 0 →
M ′

m → Mm → Nm is exact by (3.3) and therefore M ′
m ≃ Ker(φm) = 0 since φm is injective.

Hence M ′ = 0 by (3.8), hence φ is injective.

For the other part of the proposition, just reverse all the arrows. □

Flatness is a local poperty:

Proposition 3.10. For any A-module M, the following statements are equivalent:

(1) M is a flat A-module;
(2) Mp is a flat Ap-modules for each prime ideal p;
(3) Mm is a flat Am-modules for each maximal ideal m.
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Proof. (1) ⇒ (2) by (3.5) and (2.21).

(2) ⇒ (3) O.K.

(3) ⇒ (1). If N → P is a homomorphism of A-modules, and m is any maximal ideal of A,
then

N → P injective ⇒ Nm → Pm injective, by (3.9)

⇒ Nm⊗Am Mm → Pm⊗Am Mm injective, by (2.20)

⇒ (N ⊗A M)m → (P ⊗A M)m injective, by (3.7)

⇒ N ⊗A M → P ⊗A M injective, by (3.9)

Hence M is flat by (2.20). □

3.2. Extended and contracted ideals in rings of fractions. Let A be a ring, S a multi-
plicatively closed subset of A and f : A → S−1 A the natural homomorphism, defined by
f (a) = a/1. Let C be the set of contracted ideals in A, and let E be the set of extended
ideals in S−1 A (cf. (1.17)). If a is an ideal in A, its extension ae in S−1 A is S−1a (for any
y ∈ ae is of the form

∑
ai /si , where ai ∈ a and si ∈ S; bring this fraction to a common

denominator).

Proposition 3.11.

(1) Every ideal in S−1 A is an extended ideal.
(2) If a is an ideal in A, then aec =⋃

s∈S (a : s). Hence ae = (1) if and only if a meets S.
(3) a ∈C ⇔ no element of S is a zero-divisor in A/a.
(4) The prime ideals of S−1 A are in one-to-one correspondence (p↔ S−1p) with the

prime ideals of A which don’t meet S.
(5) The operation S−1 commutes with the formation of finite sums, products, inter-

sections and radicals.

Proof. (1) Let b be an ideal in S−1 A, and let x/s ∈ b. Then x/1 ∈ b, hence x ∈ bc and
therefore x/s ∈ bce ). Since b⊃ bce in any case (1.17), it follows that b= bce .

(2) x ∈ aec = (S−1a)c ⇔ x/1 = a/s for some a ∈ a, s ∈ S ⇔ (xs − a)t = 0 for some t ∈ S ⇔
xst ∈ a⇔ x ∈⋃

s∈S (a : s).

(3) a ∈C ⇔ aec ⊂ a⇔ (sx ∈ a for some s ∈ S ⇒ x ∈ a) ⇔ no s ∈ S is a zero-divisor in A/a.

(4) If q is a prime ideal in S−1 A, then qc is a prime ideal in A (this much is true for any
ring homomorphism). Conversely, if p is a prime ideal in A, then A/p is an integral
domain; if S̄ is the image of S in A/p, we have S−1 A/S−1p ≃ S̄−1(A/p) which is either 0
or else is contained in the field of fractions of A/p and is therefore an integral domain,
and therefore S−1p is either prime or is the unit ideal; by (2) the latter possibility occurs
if and only if p meets S.

(5) For sums and products, this follows from (1.18); for intersections, from (3.4). As to
radicals, we have S−1r (a) ⊂ r (S−1a) from (1.18), and the proof of the reverse inclusion is
a routine verification which we leave to the reader. □

Remarks. 1) If a,b are ideals of A, the formula

S−1(a : b) = (S−1a : S−1b)

is true provided the ideal b is finitely generated: see (3.15).

2) The proof in (1.8) that if f ∈ A is not nilpotent there is a prime ideal of A which does
not contain f can be expressed more concisely in the language of rings of fractions.
Since the set S = ( f n)n≥0 does not contain 0, the ring S−1 A = A f is not the zero ring and
therefore by (1.3) has a maximal ideal, whose contraction in A is a prime ideal p which
does not meet S by (3.11); hence f ∉ p.
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Corollary 3.12. If N is the nilradical of A, the nilradical of S−1 A is S−1N. □

Corollary 3.13. If p is a prime ideal of A, the prime ideals of the local ring Ap are in
one-to-one correspondence with the prime ideals of A contained in p.

Proof. Take S = A−p in prop. (3.11), (4). □

Remark. Thus the passage from A to Ap cuts out all prime ideals except those contained
in p. In the other directions, the passage from A to A/p cuts out all prime ideals except
those containing p. Hence if p,q are prime ideals such that p ⊃ q, then by localizing
with respect to p and taking the quotient mod q (in either order: these two operations
commute, by (3.4)), we restrict our attention to those prime ideals which lie between p
and q. In particular, if p= qwe end up with a field, called the residue field at p, which can
be obtained either as the field of fractions of the integral domain A/p or as the residue
field of the local ring Ap.

Proposition 3.14. Let M be a finitely generated A-module, S a multiplicatively closed
subset of A. Then S−1

(
Ann(M)

)= Ann(S−1M).

Proof. If this is true for two A-modules, M , N , it is true for M +N ;

S−1(Ann(M +N )
)= S−1(Ann(M)∩ Ann(N )

)
by (2.2)

= S−1(Ann(M)
)∩S−1(Ann(N )

)
by (3.4)

= Ann(S−1M)∩ Ann(S−1N ) by hypothesis

= Ann(S−1M +S−1N ) = Ann
(
S−1(M +N )

)
.

Hence it is enough to prove (3.14) for M generated by a single element: then M ≃ A/a (as
A-module), where a = Ann(M); S−1M ≃ (S−1 A)/(S−1a) by (3.4), so that Ann(S−1M) =
S−1a= S−1

(
Ann(M)

)
. □

Corollary 3.15. If N ,P are submodules of an A-module M and if P is finitely generated,
then S−1(N : P ) = (S−1N : S−1P ).

Proof. (N : P ) = Ann
(
(N +P/N )

)
by (2.2); now apply (3.14). □

Proposition 3.16. Let A → B be a ring homomorphism and let p be a prime ideal of A.
Then p is the contraction of a prime ideal of B if and only if pec = p.

Proof. If p= qc then pec = p by (1.17). Conversely, if pec = p, let S be the image of A −p
in B . Then pe does not meet A, therefore by (3.11) its extension in S−1B is a proper ideal
and hence is contained in a maximal ideal m of S−1B . If q is the contraction of m in B ,
then q is prime, q⊃ pe and q∩S =∅. Hence qc = p. □

3.3. Exercises.

(1) Let S be a multiplicatively closed subset of a ring A, and let M be a finitely gen-
erated A-module. Prove thet S−1M = 0 if and only if there exists s ∈ S such that
sM = 0.

(2) Let a be an ideal of a ring A, and let S = 1+a. Show that S−1a is contained in the
Jacobson radical of S−1 A.

Use this result and Nakayama’s lemma to give a proof of (2.5) which does not
depend on determinants. [If M = aM , then S−1M = (S−1a)(S−1M), hence by
Nakayama we have S−1M = 0. Now use Exercise (1).]

(3) Let A be a ring, let S and T be two multiplicatively closed subsets of A, and let
U be the image of T in S−1 A. Show that the rings (ST )−1 A and U−1(S−1 A) are
isomorphic.
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(4) Let f : A → B be a homomorphism of rings and let S be a multiplicatively closed
subset of A. Let T = f (S). Show that S−1B and T −1B are isomorphic as S−1 A-
modules.

(5) Let A be a ring. Suppose that, for each prime ideal p, the local ring Ap has no
nilpotent element ̸= 0. Show that A has no nilpotent element ̸= 0. If each Ap is
an integral domain, is A necessarily an integral domain?

(6) Let A be a ring ̸= 0 and let Σ be the set of all multiplicatively closed subsets S of
A such that 0 ∉ S. Show that Σ has maximal elements, and that S ∈Σ is maximal
if and only if A−S is a minimal prime ideal of A.

(7) A multiplicatively closed subset S of a ring A is said to be saturated if

x y ∈ S ⇔ x ∈ S and y ∈ S.

Prove that
(a) S is saturated ⇔ A−S is a union of prime ideals.
(b) If S is any multiplicatively closed subset of A, there is a unique smallest

saturated multiplicatively closed subset S̄ containing S, and that S̄ is the
complement in A of the union of the prime ideals which do not meet S. (S̄
is called the saturation of S.)

If S = 1+a, where a is an ideal of A, find S̄.
(8) Let S,T be multiplicatively closed subsets of A, such that S ⊂ T . Let φ : S−1 A →

T −1 A be the homomorphism which maps each a/s ∈ S−1 A to a/s considered as
an element of T −1 A. Show that the following statements are equivalent:
(a) φ is bijective.
(b) For each t ∈ T , t/1 is a unit in S−1 A.
(c) For each t ∈ T there exists x ∈ A such that xt ∈ S.
(d) T is contained in the saturation of S (Exercise (7)).
(e) Every prime ideal which meets T also meets S.

(9) The set S0 of all non-zero-divisors in A is a saturated multiplicatively closed
subset of A. Hence the set D of zero-divisors in A is a union of prime ideals (see
Chapter 1, Exercise (14)). Show that every minimal prime ideal of A is contained
in D . [Use Exercise (6)]

The ring S−1
0 A is called the total ring of fractions of A. Prove that

(a) S0 is the largest multiplicatively closed subset of A for which the homo-
morphism A → S−1

0 A is injective.
(b) Every element in S−1

0 A is either a zero-divisor or a unit.
(c) Every ring in which every non-unit is a zero-divisor is equal to its total ring

of fractions (i.e., A → S−1
0 A is bijective).

(10) Let A be a ring.
(a) If A is absolutely flat (Chapter 2, Exercise (27)) and S is any multiplicatively

closed subset of A, then S−1 A is absolutely flat.
(b) A is absolutely flat ⇔ Am is a field for each maximal ideal m.

(11) Let A be a ring. Prove that the following are equivalent:
(a) A/N is absolutely flat (N being the nilradical of A).
(b) Every prime ideal of A is maximal.
(c) Spec(A) is a T1-space (i.e., every subset consisting of a single point is closed).
(d) Spec(A) is Hausdorff.

If these conditions are satisfied, show that Spec(A) is compact and totally
disconnected (i.e., the only connected subsets of Spec(A) are those consisting
of a single point).

(12) Let A be an integral domain and M an A-module. An element x ∈ M is a torsion
element of M if Ann(x) ̸= 0, that is if x is killed by some non-zero element of A.
Show that the torsion elements of M form a submodule of M . This submodule
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is called the torsion submodule of M and is denoted by T (M). If T (M) = 0, the
module M is said to be torsion-free. Show that
(a) If M is any A-module, then M/T (M) is torsion-free.
(b) If f : M → N is a module homomorphism, then f (T (M)) ⊂ T (N ).
(c) If 0 → M ′ → M → M ′′ is an exact sequence, then the sequence 0 → T (M ′) →

T (M) → T (M ′′) is exact.
(d) If M is any A-module, then T (M) is the kernel of the mapping x 7→ 1⊗ x of

M into K ⊗A M , where K is the field of fractions of A.
[For (12d), show that K may be regarded as the direct limit of its submodules
Aξ (ξ ∈ K ); using Chapter 1, Exercise (15) and Exercise (20), show that if 1⊗x = 0
in K ⊗M then 1⊗x = 0 in Aξ⊗M for some ξ ̸= 0. Deduce that ξ−1x = 0.]

(13) Let A be a multiplicatively closed subset of an intergal domain A. In the nota-
tion of Exercise (12), show that T (S−1M) = S−1T (M). Deduce that the following
are equivalent:
(a) M is torsion-free.
(b) Mp is torsion-free for all prime ideals p.
(c) Mm is torsion-free for all maximal ideals m.

(14) Let M be an A-module and a an ideal of A. Suppose that Mm = 0 for all maximal
ideals m⊃ a. Prove that M = aM . [Pass to the A/a-module M/aM and use (3.8).]

(15) Let A be a ring, and let F be the A-module An . Show that every set of n gener-
ators of F is a basis of F . [Let x1, . . . , xn be a set of generators and e1, . . . ,en the
canonical basis of F . Define φ : F → F by φ(ei ) = xi . Then φ is surjective and we
have to prove that is is an isomorphism. By (3.9) we may assume that A is a local
ring. Let N be the kernel of φ and let k = A/m be the residue field of A. Since
F is a flat A-module, the exact sequence 0 → N → F → F → 0 gives an exact
sequence 0 → k ⊗N → k ⊗F

1⊗φ−→k ⊗F → 0. Now k ⊗F = kn is an n-dimensional
vector space over k; 1⊗φ is surjective, hence bijective, hence k ⊗N = 0.

Also N is finitely generated, by Chapter 2, Exercise (12), hence N = 0 by
Nakayama’s lemma. Hence φ is an isomorphism.]

Deduce that every set of generators of F has at least n elements.
(16) Let B be a flat A-algebra. Then the following conditions are equivalent:

(a) aec = a for all ideals a of A.
(b) Spec(B) → Spec(A) is surjective.
(c) For every maximal ideal m of A we have me ̸= (1).
(d) If M is any non-zero A-module, then MB ̸= 0.
(e) For every A-module M , the mapping x 7→ 1⊗x of M into MB is injective.

[For (16a) ⇒ (16b), use (3.16).
(16b) ⇒ (16c) is clear.
(16c) ⇒ (16d): Let x be a non-zero element of M and let M ′ = Ax. Since B

is flat over A it is enough to show that M ′
B ̸= 0. We have M ′ ≃ A/a for some

ideal a ̸= (1), hence M ′
B ≃ B/ae . Now a ⊂ m for some maximal ideal m, hence

ae ⊂me ̸= (1). Hence M ′
B ̸= 0.

(16d) ⇒ (16e): Let M ′ be the kernel of M → MB . Since B is flat over A, the
sequence 0 → M ′

B → MB → (MB )B is exact. But (Chapter 2, Exercise (13), with
N = MB ) the mapping MB → (MB )B is injective, hence M ′

B = 0 and therefore
M ′ = 0.

(16e) ⇒ (16a): Take M = A/a.]
B is said to be faithfully flat over A.

(17) Let A
f−→B

g−→C be ring homomorphisms. If g ◦ f is flat and g is faithfully flat,
then f is flat.

(18) Let f : A → B be a flat homomorphism of rings, let q be a prime ideal of B and
let p= qc . Then f ∗ : Spec(Bq) → Spec(Ap) is surjective. [For Bp is flat over Ap by
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(3.10), and Bq is a local ring of Bp, hence flat over Bp. Hence Bq is flat over Ap

and satisfies condition (16c) of Exercise (16)]
(19) Let A be a ring, M an A-module. The support of M is defined to be the set

Supp (M) of prime ideals p of A such that Mp ̸= 0. Prove the following results:
(a) M ̸= 0 ⇔ Supp (M) ̸=∅.
(b) V (a) = Supp (A/a).
(c) If 0 → M ′ → M → M ′′ → 0 is an exact sequence, then Supp (M) = Supp (M ′)∪

Supp (M ′′.
(d) If M =∑

Mi , then Supp (M) =⋃
Supp (Mi ).

(e) If M is finitely generated, then Supp (M) = V (Ann(M)) (and is therefore a
closed subset of Spec(A)).

(f) If M , N are finitely generated, then Supp (M ⊗A N ) = Supp (M)∩Supp (N ).
[Use Chapter 2, Exercise (3)]

(g) If M , N are finitely generated and a is an ideal of A, then Supp (M/aM) =
V (a+ Ann(M)).

(h) If f : A → B is a ring homomorphism and M is a finitely generated A-
module, then Supp (B ⊗A M) = f ∗−1(Supp (M)).

(20) Let f : A → B be a ring homomorphism, f ∗ : Spec(B) → Spec(A) the associated
mapping. Show that
(a) Every prime ideal of A is a contracted ideal ⇔ f ∗ is surjective.
(b) Every prime ideal of B is an extended ideal ⇒ f ∗ is injective.

Is the converse of (20b) true?
(21) (a) Let A be a ring, S a multiplicatively closed subset of A, and φ : A → S−1 A

the canonical homomorphism. Show that φ∗ : Spec(S−1 A) → Spec(A) is
a homeomorphism of Spec(S−1 A) onto its image in X = Spec(A). Let this
image be denoted by S−1X .
In particular, if f ∈ A, the image of Spec(A f ) in X is the basic open set X f

(Chapter 1, Exercise (17)).
(b) Let f : A → B be a ring homomorphism. Let X = Spec(A) and Y = Spec(B),

and let f ∗ : Y → X be the mapping associated with f .
Identifying Spec(S−1 A) with its canonical image S−1X in X , and Spec(S−1B)
(= Spec( f (S)−1B)) with its canonical image S−1Y in Y , show that S−1 f ∗ :
Spec(S−1B) → Spec(S−1 A) is the restriction of f ∗ to S−1Y , and that S−1Y =
f ∗−1(S−1X ).

(c) Let a be an ideal of A and let b = ae its extension in B . Let f̄ : A/a→ B/b
be the homomorphism induced by f . If Spec(A/a) is identified with its
canonical image V (a) in X , and Spec(B/b) with its image V (b) in Y , show
that f̄ ∗ is the restriction of f ∗ to V (b).

(d) Let p be a prime ideal of A. Take S = A −p in (21b) and then reduce mod
S−1p as in (21c). Deduce that the subspace f ∗−1(p) of Y is naturally homeo-
morphic to Spec(Bp/pBp) = Spec(k(p)⊗A B), where k(p) is the residue field
of the local ring Ap.
Spec(k(p)⊗A B) is called the fiber of f ∗ over p.

(22) Let A be a ring and p a prime ideal of A. The the canonical image of Spec(Ap) in
Spec(A) is equal to the intersection of all open neighbourhoods of p in Spec(A).

(23) Let A be a ring, let X = Spec(A) and let U be a basic open set in X (i.e., U = X f

for some f ∈ A: Chapter 1, Exercise (17)).
(a) If U = X f , show that the ring A(U ) = A f depends only on U and not on f .
(b) Let U ′ = Xg be another basic open set such that U ′ ⊂ U . Show that there

is an equation of the form g n = u f for some integer n > 0 and some u ∈ A,
and use this to define a homomorphism ρ : A(U ) → A(U ′) (i.e., A f → Ag )
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by mapping a/ f m to aum/g mn . Show that ρ depends only on U and U ′.
This homomorphism is called the restriction homomorphism.

(c) If U =U ′, then ρ is the identity map.
(d) If U ⊃U ′ ⊃U ′′ are basic open sets in X , show that the diagram

A(U ) //

##

A(U ′′)

A(U ′)

::

(in which the arrows are restriction homomorphisms) is commutative.
(e) Let x (= p) be a point of X . Show that

lim−−→
U∋x

A(U ) ≃ Ap.

The assignment of the ring A(U ) to each basic open set U of X , and the restric-
tion homomorphisms ρ, satisfying the conditions (23c) and (23d) above, con-
stitutes a presheaf of rings on the basis of open sets (X f ) f ∈A . (23e) says that the
stalk of this presheaf at x ∈ X is the corresponding local ring Ap.

(24) Show that the presheaf of Exercise (23) has the following property. Let (Ui )i∈I

be a covering of X by open sets. For each i ∈ I let si ∈ A(Ui ) be such that, for
each pair i , j , the images of si and s j in A(Ui ∩U j ) are equal. Then there exists
a unique s ∈ A (= A(X )) whose image in A(Ui ) is si , for all i ∈ I . (This essentially
implies that the presheaf is a sheaf.)

(25) Let f : A → B , g : A → C be ring homomorphisms and let h : A → B ⊗A C be
defined by h(x) = f (x)⊗ g (x). Let X ,Y , Z and T be the prime spectra of A,B ,C
and B ⊗A C respectively. Then h∗(T ) = f ∗(Y )∩ g∗(Z ).

[Let p ∈ X , and let k = k(p) be the residue field at p. By Exercise (21), the fiber
h∗−1(p) is the spectrum of (B⊗AC )⊗A k ≃ (B⊗A k)⊗k (C⊗A k). Hence p ∈ h∗(T ) ⇔
(B ⊗A k)⊗k (C ⊗A k) ̸= 0 ⇔ B ⊗A k ̸= 0 and C ⊗A k ̸= 0 ⇔ p ∈ f ∗(Y )∩ g∗(Z ).]

(26) Let (Bα, gαβ) be a direct system of rings and B the direct limit. For each α, let
fα : A → Bα be a ring homomorphism such that gαβ ◦ fα = fβ whenever α ≤ β

(i.e. the Bα form a direct system of A-algebras). The fα induce f : A → B . Show
that

f ∗(Spec(B)) =⋂
α

f ∗
α (Spec(Bα)).

[Let p ∈ Spec(A). Then f ∗−1(p) is the spectrum of

B ⊗A k(p) ≃ lim−−→(Bα⊗A k(p))

(since tensor products commute with direct limits: Chapter 2, Exercise (20)). By
Exercise (21) of Chapter 2 it follows that f ∗−1(p) =∅ if and only if Bα⊗A k(p) = 0
for some α, i.e., if and only if f ∗−1

α (p) =∅.]
(27) (a) Let fα : A → Bα be any family of A-algebras and let f : A → B be their tensor

product over A (Chapter 2, Exercise (23)). Then

f ∗(Spec(B)) =⋂
α

f ∗
α (Spec(Bα)).

[Use Exercises (25) and (26).]
(b) Let fα : A → Bα be any finite family of A-algebras and let B =∏

αBα. Define
f : A → B by f (x) = ( fα(x)). Then f ∗(Spec(B)) =⋃

α f ∗
α (Spec(Bα)).

(c) Hence the subsets of X = Spec(A) of the form f ∗(Spec(B)), where f : A → B
is a ring homomorphism, satisfy the axioms for closed sets in a topological
space. The associated topology is the constructible topology on X . It is finer
than the Zariski topology (i.e., there are more open sets, or equivalently
more closed sets).
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(d) Let XC denote the set X endowed with thse constructible topology. Show
that XC is quasi-compact.

(28) (Continuation of Exercise (27).)
(a) For each g ∈ A, the set Xg (Chapter 1, Exercise (17)) is both open and closed

in the constructible topology.
(b) Let C ′ denote the smallest topology on X for which the sets Xg are both

open and closed, and let XC ′ denote the set X endowed with this topology.
Show that XC ′ is Hausdorff.

(c) Deduce that the identity mapping XC → XC ′ is a homeomorphism. Hence
a subset E of X is of the form f ∗(Spec(B)) for some f : A → B if and only if
it is closed in the topology C ′:

(d) The topological space XC is compact, Hausdorff and totally disconnected.
(29) Let f : A → B be a ring homomorphism. Show that f ∗ : Spec(B) → Spec(A)

is a continuous closed mapping (i.e., maps closed sets to closed sets) for the
constructible topology.

(30) Show that the Zariski topology and the constructible topology on Spec(A) are
the same if and only if A/N is absolutely flat (where N is the nilradical of A).
[Use Exercise (11)]

4. PRIMARY DECOMPOSITION

The decomposition of an ideal into primary ideals is a traditional pillar of ideal theory.
It provides the algebraic foundation for decomposing an algebraic variety into its irre-
ducible components—although it is only fair to point out that the algebraic picture is
more complicated than the naïve geometry would suggest. From another point of view
primary decomposition provides a generalization of the factorization of an integer as a
product of prime powers. In the modern treatment, with its emphasis on localization,
primary decomposition is no longer such a central tool in the theory. It is still, however,
of interest in itself and in this chapter we establish the classical uniqueness theorems.

The prototypes of commutative rings are Z and the ring of polynomials k[x1, . . . , xn]
where k is a field; both these are unique factorization domains. This is not true of ar-
bitrary commutative rings, even if they are integral domains (the classical example is
the ring Z[

p−5], in which the element 6 has two essentially distinct factorizations, 2 ·3
and (1+p−5)(1−p−5)). However, there is a generalized form of unique factorization of
ideals (not elements) in a wide class of rings (the Noetherian rings).

A prime ideal in a ring A is in some sense a generalization of a prime number. The
corrseponding generalization of a power of a prime number is a primary ideal. An ideal
q in a ring A is primary if q ̸= A and if

x y ∈ q⇔ either x ∈ q or yn ∈ q for some n > 0.

In other words,

q is primary ⇔ A/q ̸= 0 and every zero-divisor in A/q is nilpotent.

Clearly every prime ideal is primary. Also the contraction of a primary ideal is primary,
for if f : A → B and q is a primary ideal in B , then A/qc is isomorphic to a subring of B/q.

Proposition 4.1. Let q be a primary ideal in a ring A. Then r (q) is the smallest prime
ideal containing q.

Proof. Be (1.8) it is enough to show that p= r (q) is prime. Let x y ∈ r (q), then (x y)m ∈ q
for some m > 0, and therefore either xm ∈ q or ymn ∈ q for some n > 0; i.e., either x ∈ r (q)
or y ∈ r (q). □
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If p= r (q), then q is said to be p-primary.

Examples. 1) The primary ideals in Z are (0) and (pn), where p is prime. For these are
the only ideals in Z with a prime radical, and it is immediately checked that they are
primary.

2) Let A = k[x, y], q= (x, y2). Then A/q≃ k[y]/(y2), in which the zero-divisors are all the
multiples of y , hence are nilpotent. Hence q is primary, and its radical p is (x, y). We
have p2 ⊊ q⊊ p, so that a primary ideal is not necessarily a prime power.

3) Conversely, a prime power pn is not necessarily primary, although its radical is the
prime ideal p. For example, let A = k[x, y, z]/(x y−z2) and let x̄, ȳ , z̄ denote the images of
x, y, z respectively in A. Then p= (x̄, z̄) is prime (since A/p≃ k[y], an integral domain);
we have x̄ ȳ = z̄2 ∈ p2, but x̄ ∉ p2 and ȳ ∉ r (p2) = p; hence p2 is not primary. However,
there is the following result:

Proposition 4.2. If r (a) is maximal, then a is primary. In particular, the powers of a
maximal ideal m are m-primary.

Proof. Let r (a) =m. The image of m in A/a is the nilradical of A/a, hence A/a has only
one prime ideal, by (1.8). Hence every element of A/a is either a unit or nilpotent, and
so every zero-divisor in A/a is nilpotent. □

We are going to study presentations of an ideal as an intersection of primary ideals. First,
a couple of lemmas:

Lemma 4.3. If qi (1 ≤ i ≤ n) are p-primary, then q=⋂n
i=1 qi is p-primary.

Proof. r (q) = r (
⋂n

i=1 qi ) = ⋂n
i=1 r (qi ) = p. Let x y ∈ q, y ∉ q. Then for some i we have

x y ∈ qi and y ∉ qi , hence x ∈ p, since qi is primary. □

Lemma 4.4. Let q be a p-primary ideal, x an element of A. Then

(1) if x ∈ q then (q : x) = (1);
(2) if x ∉ q then (q : x) is p-primary, and therefore r (q : x) = p;
(3) if x ∉ p then (q : x) = q.

Proof. (1) and (3) follow immediately from the definitions.

(2): if y ∈ (q : x) then x y ∈ q, hence (as x ∉ q) we have y ∈ p. Hence q⊂ (q : x) ⊂ p; taking
radicals, we get r (q : x) = p. Let y z ∈ (q : x) with y ∉ p; then x y z ∈ q, hence xz ∈ q, hence
z ∈ (q : x). □

A primary decomposition of an ideal a in A is an expression of a as a finite intersection
of primary ideals, say

(4.1) a=
n⋂

i=1
qi .

In general such a primary decomposition need not exist; in this chapter we shall restrict
our attention to ideals which have a primary decomposition. If moreover (1) the r (qi )
are all distinct, (2) we have qi ⊋

⋂
j ̸=i q j (1 ≤ i ≤ n) the primary decomposition (4.1) is

said to be minimal (or irredundant, or reduced, or normal, . . . ). By (4.3) we can achieve
(1) and then we can omit any superfluous terms to achieve (2). Thus any primary de-
composition can be reduced to a minimal one. We shall say that a is decomposable if it
has a primary decomposition.
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Theorem 4.5 (1st uniqueness theorem). Let a be a decomposable ideal and let a=⋂n
i=1 qi

be a minimal primary decomposition of a. Let pi = r (qi ) (1 ≤ i ≤ n). Then the pi are pre-
cisely the prime ideals which occur in the set of ideals r (a : x) (x ∈ A), and hence are
independent of the particular decomposition of a.

Proof. For any x ∈ A we have (a : x) = (
⋂
qi : x) =⋂

(qi : x), hence

r (a : x) =
n⋂

i=1
r (qi : x) = ⋂

x∉q j

p j

by (4.4). Suppose r (a : x) is prime; then by (1.11) we have r (a : x) = p j for some j . Hence
every prime ideal of the form r (a : x) is one of the p j . Conversely, for each i there exists
xi ∉ qi , xi ∈⋂

j ̸=i q j , since the decomposition is minimal; and we have r (a : xi ) = pi . □

Remarks. 1) The above proof, coupled with the last part of (4.4), shows that for each i
there exists xi in A such that (a : xi ) is pi -primary.

2) Considering A/a as an A-module, (4.5) is equivalent to saying that the pi are precisely
the prime ideals which occur as radicals of annihilators of elements of A/a.

Example. Let a= (x2, x y) in A = k[x, y]. Then a= p1 ∩p2
2 where p1 = (x), p2 = (x, y). The

ideal p2
2 is primary by (4.2). So the prime ideals are p1, p2. In this example p1 ⊂ p2; we

have r (a) = p1 ∩p2 = p1, but a is not a primary ideal.

The prime ideals pi in (4.5) are said to belong to a, or to be associated with a. The ideal
a is primary if and only if it has only one associated prime ideal. The minimal elements
of the set {p1, . . . ,pn} are called the minimal or isolated prime ideals belonging to a. The
others are called embedded prime ideals. In the example above, p2 = (x, y) is embedded.

Proposition 4.6. Let a be a decomposable ideal. Then any prime ideal p ⊃ a contains a
minimal prime ideal belonging to a, and thus the minimal prime ideals are precisely the
minimal elements in the set of all prime ideals containing a.

Proof. If p ⊃ a = ⋂
qi , then p = r (p) ⊃ ⋂

r (qi ) = ⋂
pi . Hence by (1.11) we have p ⊃ pi for

some i ; hence p contains a minimal prime ideal of a. □

Remarks. 1) The names isolated and embedded come from geometry. Thus if k is a field
and A = k[x1, . . . , xn], the ideal a gives rise to a variety X ⊂ kn (see Chapter 1, Exercise
(25)). The minimal primes pi correspond to the irreducible components of X , and the
embedded primes correspond to subvarieties of these, i.e., varieties embedded in the
irreducible components. Thus in the example before (4.6) the variety defined by a is the
line x = 0, and the embedded ideal p2 = (x, y) corresponds to the origin (0,0).

2) It is not true that all the primary components are independent of the decomposi-
tion. For example (x2, x y) = (x)∩ (x, y)2 = (x)∩ (x2, y) are two distinct minimal primary
decompositions. However, there are some uniqueness properties: see (4.10).

Proposition 4.7. Let a be a decomposable ideal, let a = ⋂n
i=1 qi be a minimal primary

decomposition, and let r (qi ) = pi . Then

n⋃
i=1

pi = {x ∈ A : (a : x) ̸= a}

In particular, if the zero ideal is decomposable, the set D of zero-divisors of A is the union
of the prime ideals belonging to 0.
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Proof. If a is decomposable, then 0 is decomposable in A/a: namely 0 =⋂
q̄i , where q̄i

is the image of qi in A/a, and is primary. Hence it is enough to prove the last statement
of (4.7). By (1.15) we have D = ⋃

x ̸=0 r (0 : x); from the proof of (4.5), we have r (0 : x) =⋂
x∉q j p j ⊂ p j for some j , hence D ⊂ ⋃n

i=1pi . But also from (4.5) each pi is of the form
r (0 : x) for some x ∈ A, hence

⋃
pi ⊂ D . □

Thus (the zero ideal being decomposable)

D = set of zero-divisors

=⋃
of all prime ideals belonging to 0;

N= set of all nilpotent elements

=⋂
of all minimal primes belonging to 0.

Next we investigate the behaviour of primary ideals under localization.

Proposition 4.8. Let S be a multiplicatively closed subset of A, and let q be a p-primary
ideal.

(1) If S ∩p ̸=∅, then S−1q= S−1 A.
(2) If S ∩p=∅, then S−1q is S−1p-primary and its contraction in A is q.

Hence primary ideals correspond to primary ideals in the corrsepondence (3.11) between
ideals in S−1 A and contracted ideals in A.

Proof. (1) If s ∈ S ∩p, then sn ∈ S ∩q for some n > 0; hence S−1q contains sn/1, which is
a unit in S−1 A.

(1) If S ∩ p = ∅, then s ∈ S and as ∈ q imply a ∈ q, hence qec = q by (3.11). Also from
(3.11) we have r (qe ) = r (S−1q) = S−1r (q) = S−1p. The verification that S−1q is primary is
straightforward. Finally, the contraction of a primary ideal is primary. □

For any ideal a and any multiplicatively closed subset S in A, the contraction in A of the
ideal S−1a is denoted by S(a).

Proposition 4.9. Let S be a multiplicatively closed subset of A and let a be a decompos-
able ideal. Let a = ⋂n

i=1 qi be a minimal primary decomposition of a. Let pi = r (qi ) and
suppose the qi numbered so that S meets pm+1, . . . ,pn but not p1, . . . ,pm . Then

S−1a=
m⋂

i=1
S−1qi , S(a) =

m⋂
i=1

qi ,

and these are minimal primary decompositions.

Proof. S−1a=⋂n
i=1 S−1qi by (3.11) =⋂m

i=1 S−1qi by (4.8), and S−1qi is S−1pi -primary for
i = 1, . . . ,m. Since the pi are distinct, so are the S−1pi (1 ≤ i ≤ m), hence we have a
minimal primary decomposition. Contracting both sides, we get

S(a) = (S−1a)c =
m⋂

i=1
(S−1qi )c =

m⋂
i=1

qi

by (4.8) again. □

A set Σ of prime ideals belonging to a is said to be isolated if it satisfies the following
condition: if p′ is a prime ideal belonging to a and p′ ⊂ p for some p ∈Σ, then p′ ∈Σ.



46 M. F. ATIYAH AND I. G. MACDONALD

Let Σ be an isolated set of prime ideals belonging to a, and let S = A −⋃
p∈Σp. Then S is

multiplicatively closed and, for any prime ideal p′ belonging to a, we have

p′ ∈Σ⇒ p′∩S =∅;

p′ ∉Σ⇒ p′ ̸⊂ ⋃
p∈Σ

p (by (1.11)) ⇒ p′∩S ̸=∅.

Hence, from (4.9), we deduce

Theorem 4.10 (2nd uniqueness theorem). Let a be a decomposable ideal, let a=⋂n
i=1 qi

be a minimal primary decomposition of a, and let {pi1 , . . . ,pim } be an isolated set of prime
ideals of a. Then qi1 ∩·· ·∩qim is independent of the decomposition.

In particular

Corollary 4.11. The isolated primary components (i.e., the primary components qi cor-
responding to minimal prime ideals pi ) ar uniquely determined by a. □

Proof of (4.10). We have qi1 ∩·· ·∩qim = S(a) where S = A−pi1 ∪·· ·∪pim , hence depends
only on a (since the pi depend only on a). □

Remark. On the other hand, the embedded primary components are in general not
uniquely determined by a. If A is a Noetherian ring, there are in fact infinitely many
choices for each embedded component (see Chapter 8, Exercise (1)).

4.1. Exercises.

(1) If an ideal a has a primary decomposition, then Spec(A/a) has only finitely
many irreducible components.

(2) If a= r (a), then a has no embedded prime ideals.
(3) If A is absolutely flat, every primary ideal is maximal.
(4) In the polynomial ring Z[t ], the ideal m= (2, t ) is maximal and the ideal q= (4, t )

is m-primary, but is not a power of m.
(5) In the polynomial ring K [x, y, z] where K is a field and x, y, z are independent

indeterminates, let p1 = (x, y), p2 = (x, z), m= (x, y, z); p1 and p2 are prime, and
m is maximal. Let a = p1p2. Show that a = p1 ∩ p2 ∩m2 is a reduced primary
decomposition of a. Which components are isolated and which are embedded?

(6) Let X be an infinite compact Hausdorff space, C (X ) the ring of real-valued con-
tinuous functions on X (Chapter 1, Exercise (26)). Is the zero ideal decompos-
able in this ring?

(7) Let A be a ring and let A[x] denote the ring of polynomials in one indeterminate
over A. For each ideal a of A, let a[x] denote the set of polynomials in A[x] with
coefficients in a.
(a) a[x] is the extension of a to A[x].
(b) If p is a prime ideal in A, then p[x] is a prime ideal in A[x].
(c) If q is a p-primary ideal in A, then q[x] is a p[x]-primary ideal in A[x] [Use

Chapter 1, Exercise (2)]
(d) If a=⋂n

i=1 qi is a minimal primary decomposition in A, then a[x] =⋂n
i=1 qi [x]

is a minimal primary decomposition in A[x].
(e) If p is a minimal prime ideal of a, then p[x] is a minimal prime ideal of a[x]

(8) Let k be a field. Show that in the polynomial ring k[x1, . . . , xn] the ideals pi =
(x1, . . . , xi ) (1 ≤ i ≤ n) are prime and all their powers are primary. [Use Exercise
(7)]

(9) In a ring A, let D(A) denote the set of prime ideal p which satisfy the following
condition: there exists a ∈ A such that p is minimal in the set of prime ideals
containing (0 : a). Show that x ∈ A is a zero-divisor ⇔ x ∈ p for some p ∈ D(A).
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Let S be a multiplicatively closed subset of A, and identify Spec(S−1 A) with
its image in Spec(A) (Chapter 3, Exercise (21)). Show that

D(S−1 A) = D(A)∩Spec(S−1 A).

If the zero ideal has a primary decomposition, show that D(A) is the set of asso-
ciated prime ideals of 0.

(10) For any prime ideal p in a ring A, let Sp(0) denote the kernel of the homomor-
phism A → Ap. Prove that
(a) Sp(0) ⊂ p.
(b) r (Sp(0)) = p⇔ p is a minimal prime ideal of A.
(c) If p⊃ p′, then Sp(0) ⊂ Sp′ (0).
(d)

⋂
p∈D(A) Sp(0) = 0, where D(A) is defined in Exercise (9).

(11) If p is a minimal prime ideal of a ring A, show that Sp(0) (Exercise (10)) is the
smallest p-primary ideal.

Let a be the intersection of the ideals Sp(0) as p runs through the minimal
prime ideals of A. Show that a is contained in the nilradical of A.

Suppose that the zero ideal is decomposable. Prove that a = 0 if and only if
every prime of 0 is isolated.

(12) Let A be a ring, S a multiplicatively closed subset of A. For any ideal a, let S(a)
denote the contraction of S−1a in A. The ideal S(a) is called the saturation of a
with respect to S. Prove that
(a) S(a)∩S(b) = S(a∩b)
(b) S(r (a)) = r (S(a))
(c) S(a) = (1) ⇔ a meets S
(d) S1(S2(a)) = (S1S2)(a).

If a has a primary decomposition, prove that the set of ideals S(a) (where S runs
through all multiplicatively closed subsets of A) is finite.

(13) Let A be a ring and p a prime ideal of A. The nth symbolic power of p is defined
to be the ideal (in the notation of Exercise (12))

p(n) = Sp(pn)

where Sp = A−p. Show that:
(a) p(n) is a p-primary ideal;
(b) if pn has a primary decomposition, then p(n) is its p-primary component;
(c) if p(m)p(n) has a primary decomposition, then p(m+n) is its p-primary com-

ponent;
(d) p(n) = pn ⇔ pn is p-primary.

(14) Let a be a decomposable ideal in a ring A and let p be a maximal element of the
set of ideals (a : x), where x ∈ A and x ∉ a. Show that p is a prime ideal belonging
to a.

(15) Let a be a decomposable ideal in a ring A, letΣ be an isolated set of prime ideals
belonging to a, and let qΣ be the intersection of the corresponding primary com-
ponents. Let f be an element of A such that, for each prime ideal p belonging
to a, we have f ∈ p⇔ p ∉ Σ, and let S f be the set of all powers of f . Show that
qΣ = S f (a) = (a : f n) for all large n.

(16) If A is a ring in which every ideal has a primary decomposition, show that every
ring of fractions S−1 A has the same property.

(17) Let A be a ring with the following property:2

(L1) For every ideal a ̸= (1) in A and every prime ideal p, there exists x ∉ p such
that Sp(a) = (a : x), where Sp = A−p.

2Note by Editor: L for Lasker
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Then every ideal in A is an intersection of (possibly infinitely many) primary
ideals.

[Let a be an ideal ̸= (1) in A, and let p1 be a minimal element of the set of
prime ideals containing a. Then q1 = Sp1 (a) is p1-primary (by Exercise (11)),
and q1 = (a : x) for some x ∉ p1. Show that a= q1 ∩ (a+ (x)).

Now let a1 be a maximal element of the set of ideals b⊃ a such that q1∩b= a,
and choose a1 so that x ∈ a1, and therefore a1 ̸⊂ p1. Repeat the construction
starting with a1, and so on. At the nth stage we have a= q1 ∩·· ·∩qn ∩an where
the qi are primary ideals, an is maximal among the ideals b containing an−1 =
an∩qn such that a= q1∩·· ·∩qn∩b, and an ̸⊂ pn . If at any stage we have an = (1),
the process stops, and a is a finite intersection of primary ideals. If not, continue
by transfinite induction, observing that each an strictly contains an−1.]

(18) Consider the following condition on a ring A:
(L2) Given an ideal a and a descending chain S1 ⊃ S2 ⊃ ·· · ⊃ Sn ⊃ . . . of multi-
plicatively closed subsets of A, there exists an integer n such that Sn(a) = Sk (a)
for k ≥ n. Prove that the following are equivalent:
(a) Every ideal in A has a primary decomposition;
(b) A satisfies (L1) and (L2).

[For (18a) ⇒ (18b), use Exercises (12) and (15). For (18b) ⇒ (18a) show, with the
notation of the proof of Exercise (17), that if Sn = Sp1 ∩ ·· ·∩Spn then Sn meets
an , hence Sn(an) = (1), and therefore Sn(a) = q1 ∩·· ·∩qn . Now use (L2) to show
that the construction must terminate after a finite number of steps.]

(19) Let A be a ring and p a prime ideal of A. Show that every p-primary ideal con-
tains Sp(0), the kernel of the canonical homomorphism A → Ap.

Suppose that A satisfies the following condition: for every prime ideal p, the
intersection of all p-primary ideals of A is equal to Sp(0). (Noetherian rings sat-
isfy this condition: see Chapter 10.) Let p1, . . . ,pn be distinct prime ideals, none
of which is a minimal prime of A. Then there exists an ideal a in A whose asso-
ciated prime ideals are p1, . . . ,pn .

[Proof by induction on n. The case n = 1 is trivial (take a= p1). Suppose n > 1
and let pn be maximal in the set {p1, . . . ,pn}. By induction hypothesis there exists
an ideal b and a minimal primary decomposition b= q1∩. . .qn−1, where each qi

is pi -primary. If b⊂ Spn (0), let p be a minimal prime ideal of A contained in pn .
Then Spn (0) ⊂ Sp(0), hence b ⊂ Sp(0). Taking radicals and using Exercise (10),
we have p1 ∩·· ·∩pn−1 ⊂ p, hence some pi ⊂ p, hence pi = p since p is minimal.
This is a contradiction since no pi is minimal. Hence b ̸⊂ Spn (0) and therefore
there exists a pn-primary ideal qn such that b ̸⊂ qn . Show that a = q1 ∩ ·· · ∩qn

has the required properties.]

Primary decomposition of modules

Practically the whole of this chapter can be transposed to the context of mod-
ules over a ring A. The following exercises indicate how this is done.

(20) Let M be a fixed A-module, N a submodule of M . The radical of N in M is
defined to be

rM (N ) = {x ∈ A : xq M ⊂ N for some q > 0}.

Show that rM (N ) = r (N : M) = r (Ann(M/N )). In particular, rM (N ) is an ideal.
State and prove the formulas for rM analogous to (1.13).

(21) An element x ∈ A defines an endomorphism φx of M , namely m 7→ xm. The
element is said to be a zero-divisor (resp. nilpotent) in M if φx is not injective
(resp. is nilpotent). A submodule A of M is primary in M if Q ̸= M and every
zero-divisor in M/Q is nilpotent.
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Show that if Q is primary in M , then (Q : M) is a primary ideal and hence
rM (Q) is a prime ideal p. We say that Q is p-primary (in M).

Prove the analogues of (4.3) and (4.4).
(22) A primary decomposition of N in M is a representation of N as an intersection

N =Q1 ∩·· ·∩Qn

of primary submodules of M ; it is a minimal primary decomposition if the ideals
pi = rM (Qi ) are all distinct and if none of the components Qi can be omitted
from the intersection, that is if Qi ̸⊃⋂

j ̸=i Q j (1 ≤ i ≤ n).
Prove the analogue of (4.5), that the prime ideals pi depend only on N (and

M). They are called the prime ideals belonging to N in M . Show that they are
also the prime ideals belonging to 0 in M/N .

(23) State and prove the analogues of (4.6)-(4.11) inclusive. (There is no loss of gen-
erality in taking N = 0.)

5. INTEGRAL DEPENDENCE AND VALUATIONS

In classical algebraic geometry curves were frequently studied by projecting them onto a
line and regarding the curve as a (ramified) covering of the line. This is quite analogous
to the relationship between a number field and the rational field—or rather between
their rings of integers—and the common algebraic feature is the notion of integral de-
pendence. In this chapter we prove a number of results about integral dependence. In
particular we prove the theorem of Cohen-Seidenberg (the going-up and going-down
theorems) concerning prime ideals in an integral extension. In the exercises at the end
we discuss the algebro-geometric situation and in particular the Normalization Lemma.

We also give a brief treatment of valuations.

5.1. Integral dependence. Let B be a ring, A a subring of B (so that 1 ∈ A). An element
x of B is said to be integral over A if x is a root of a monic polynomial with coefficients
in A, that is if x satisfies an equation of the form

(5.1) xn +a1xn−1 +·· ·+an = 0

where the ai are elements of A. Clearly every element of A is intergal over A.

Example. A = Z, B = Q. If a rational number x = r /s is integral over Z, where r, s have
no common factor, we have from (5.1)

r n +a1r n−1s +·· ·+an sn = 0

the ai being rational integers. Hence s divides r n , hence s =±1, hence x ∈ Z.

Proposition 5.1. The following are equivalent;

(1) x ∈ B is integral over A;
(2) A[x] is a finitely generated A-module;
(3) A[x] is contained in a subring C of B such that C is a finitely generated A-module;
(4) There exists a faithful A[x]-module M which is finitely generated as an A-module.

Proof. (1) ⇒ (2). From (5.1) we have

xn+r =−(a1xn−r−1 +·· ·+an xr )

for all r ≥ 0; hence by induction, all positive powers of x lie in the A-module generated
by 1, x, . . . , xn−1. Hence A[x] is generated (as an A-module) by 1, x, . . . , xn−1.

(2) ⇒ (3). Take C = A[x].

(3) ⇒ (4). Take M =C , which is a faithful A[x]-module (since yC = 0 ⇒ y ·1 = 0).
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(4) ⇒ (1). This follows from (2.4): take φ to be multiplication by x, and a = A (we have
xM ⊂ M since M is an A[x]-module); since M is faithful, we have xn+a1xn−1+·· ·+an = 0
for suitable ai ∈ A. □

Proposition 5.2. Let xi (1 ≤ i ≤ n) be elements of B, each integral over A. Then the ring
A[x1, . . . , xn] is a finitely generated A-module.

Proof. Be induction on n. The case n = 1 is part of (5.1). Assume n > 1, let Ar =
A[x1, . . . , xr ]; then by the inductive hypothesis An−1 is a finitely generated A-module.
An = An−1[xn] is a finitely generated An−1-module (by the case n = 1, since xn is inte-
gral over An−1). Hence by (2.17) An is finitely generated as an A-module. □

Proposition 5.3. The set C of elements of B which are integral over A is a subring of B
containing A.

Proof. If x, y ∈C then A[x, y] is a finitely generated A-module by (5.2). Hence x ± y and
x y are integral over A, by (3) of (5.1). □

The ring C in (5.3) is called the integral closure of A in B . If C = A, then A is said to be
integrally closed in B . If C = B , the ring B is said to be integral over A.

Remark. Let f : A → B be a ring homomorphism, so that B is an A-algebra. Then f
is said to be integral, and B is said to be an integral A-algebra, if B is integral over its
subring f (A). In this terminology, the above results show that

finite type + integral = finite.

Corollary 5.4. If A ⊂ B ⊂C are rings and if B is integral over A, and C is integral over B,
then C is integral over A (transitivity of integral dependence).

Proof. Let x ∈C , then we have an equation

xn +b1xn−1 +·· ·+bn = 0 (bi ∈ B).

The ring B ′ = A[b1, . . . ,bn] is a finitely generated A-module by (5.2), and B ′[x] is a finitely
generated B ′-module (since x is integral over B ′). Hence B ′[x] is a finitely generated A-
module by (2.17) and therefore x is integral over A by (3) of (5.1). □

Corollary 5.5. Let A ⊂ B be rings and let C be the integral closure of A in B. Then C is
integrally closed in B.

Proof. Let x ∈ B be integral over C . By (5.4) x is integral over A, hence x ∈C . □

The next proposition shows that integral dependence is preserved on passing to quo-
tients and to rings of fractions:

Proposition 5.6. Let A ⊂ B be rings, B integral over A.

(1) If b is an ideal of B and a= bc = b∩ A, then B/b is integral over A/a.
(2) If S is a multiplicatively closed subset of A, then S−1B is integral over S−1 A.

Proof. (1) If x ∈ B we have, say, xn + a1xn−1 + ·· · + an = 0, with ai ∈ A. Reduce this
equation modb.

(2) Let x/s ∈ S−1B (x ∈ B , s ∈ S). Then the equation above gives

(x/s)n + (a1/s)(x/s)n−1 +·· ·+an/sn = 0

which shows that x/s is integral over S−1 A. □
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5.2. The going-up theorem.

Proposition 5.7. Let A ⊂ B be integral domains, B integral over A. Then B is a field if
and only if A is a field.

Proof. Suppose A is a field; let y ∈ B , y ̸= 0. Let

yn +a1 yn−1 +·· ·+an = 0 (ai ∈ A)

be an equation of integral dependence for y of smallest possible degree. Since B is an
integral domain we have an ̸= 0, hence y−1 =−a−1

n (yn−1+a1 yn−2+·· ·+an−1) ∈ B . Hence
B is a field.

Conversely, suppose B is a field; let x ∈ A, x ̸= 0. Then x−1 ∈ B , hence is integral over A,
so we have an equation

x−m +a′
1x−m+1 +·· ·+a′

m = 0 (a′
i ∈ A)

It follows that x−1 =−(a′
1 +a′

2x +·· ·+a′
m xm−1) ∈ A, hence A is a field. □

Corollary 5.8. Let A ⊂ B be rings, B integral over A; let q be a prime ideal of B and let
p= qc = q∩ A. Then q is maximal if and only if p is maximal.

Proof. By (5.6), B/q is integral over A/p, and both these rings are integral domains. Now
use (5.7). □

Corollary 5.9. Let A ⊂ B be rings, B integral over A; let q,q′ be prime ideals of B such that
q⊂ q′ and qc = q′c = p say. Then q= q′.

Proof. By (5.6), Bp is integral over Ap. Let m be the extension of p in Ap and let n,n′ be
the extensions of q,q′ in Bp. Then m is the maximal ideal of Ap; n⊂ n′, and ne = n′e =m.
By (5.8) it follows that n,n′ are maximal, hence n= n′, hence by (3.11)(4) q= q′. □

Theorem 5.10. Let A ⊂ B be rings, B integral over A, and let p be a prime ideal of A. Then
there exists a prime ideal q of B such that q∩ A = p.

Proof. By (5.6), Bp is integral over Ap, and the diagram

A

α

��

// B

β

��
Ap

// Bp

(in which the horizontal arrows are injections) is commutative. Let n be a maximal ideal
of Bp; then m= n∩Ap is maximal by (5.8), hence is the unique maximal ideal of the local
ring Ap. If q=β−1(n), then q is prime and we have q∩ A =α−1(m) = p. □

Theorem 5.11 (Going-up theorem). Let A ⊂ B be rings, B integral over A; let p1 ⊂ ·· · ⊂ pn

be a chain of prime ideals of A and q1 ⊂ ·· · ⊂ qm (m < n) a chain of prime ideals of B such
that qi ∩ A = pi (1 ≤ i ≤ m). Then the chain q1 ⊂ ·· · ⊂ qm can be extended to a chain
q1 ⊂ ·· · ⊂ qn such that qi ∩ A = pi for 1 ≤ i ≤ n.

Proof. By induction we reduce immediately to the case m = 1,n = 2. Let Ā = A/p1,
B̄ = B/q1; then Ā ⊂ B̄ , and B̄ is integral over Ā by (5.6). Hence, by (5.10), there exists a
prime ideal q̄2 of B̄ such that q̄2 ∩ Ā = p̄2, the image of p2 in Ā. Lift back q̄2 to B and we
have a prime ideal q2 with the required properties. □
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5.3. Integrally closed integral domains. The going-down theorem. Proposition (5.6)(2)
can be sharpened:

Proposition 5.12. Let A ⊂ B be rings, C the integral closure of A in B. Let S be a multi-
plicatively closed subset of A. Then S−1C is the integral closure of S−1 A in S−1B.

Proof. By (5.6), S−1C is integral over S−1 A. Conversely, if b/s ∈ S−1B is integral over
S−1 A, then we have an equation of the form

(b/s)n + (a1/s1)(b/s)n−1 +·· ·+an/sn = 0

where ai ∈ A, si ∈ S (1 ≤ i ≤ n). Let t = s1 · · · sn and multiply this equation by (st )n

throughout. Then it becomes an equation of integral dependence for bt over A. Hence
bt ∈C and therefore b/s = bt/st ∈ S−1C . □

An integral domain is said to be integrally closed (without qualification) if it is integrally
closed in its field of fractions. For example, Z is integrally closed (see (5.1)). The same
argument shows that any unique factorization domain is integrally closed.

Integral closure is a local property:

Proposition 5.13. Let A be an integral domain. Then the following are equivalent:

(1) A is integrally closed;
(2) Ap is integrally closed, for each prime ideal p;
(3) Am is integrally closed, for each maximal ideal m,

Proof. Let K be the field of fractions of A, let C be the integral closure of A in K , and
let f : A → C be the identity mapping of A into C . Then A is integrally closed ⇔ f is
surjective, and by (5.12) Ap (resp. Am) is integrally closed ⇔ fp (resp. fm) is surjective.
Now use (3.9). □

Let A ⊂ B be rings and let a be an ideal of A. An element of B is said to be integral over a
if it satisfies an equation of integral dependence over A in which all the coefficients lie
in a. The integral closure of a in B is the set of all elements of B which are integral over
a.

Lemma 5.14. Let C be the integral closure of A in B and let ae denote the extension of a
in C . Then the integral closure of a in B is the radical of ae (and is therefore closed under
addition and multiplication).

Proof. If x ∈ B is integral over a, we have an equation of the form

xn +a1xn−1 +·· ·+an = 0

with a1, . . . , an in a. Hence x ∈ C and xn ∈ ae , that is x ∈ r (ae ). Conversely, if x ∈ r (ae )
then xn =∑

ai xi for some n > 0, where the ai are elements of a and the xi are elements
of C . Since each xi is integral over A it follows from (5.2) that M = A[x1, . . . , xn] is a
finitely generated A-module, and we have xn M ⊂ aM . Hence by (2.4) (taking φ there to
be multiplication by xn) we see that xn is integral over a, hence x is integral over a. □

Proposition 5.15. Let A ⊂ B be integral domains, A integrally closed, and let x ∈ B be
integral over an ideal a of A. Then x is algebraic over the field of fractions K of A, and if
its minimal polynomial over K is t n +a1t n−1 +·· ·+an , then a1, . . . , an lie in r (a).
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Proof. Clearly x is algebraic over K . Let L be an extension field of K which contains
all the conjugates x1, . . . , xn of x. Each xi satisfies the same equation of integral de-
pendence as x does, hence each xi is integral over a. The coefficients of the minimal
polynomial of x over K are polynomials in the xi , hence by (5.14) are integral over a.
Since A is integrally closed, they must lie in r (a), by (5.14) again. □

Theorem 5.16 (Going-down theorem). Let A ⊂ B be integral domains, A integrally closed,
B integral over A. Let p1 ⊃ ·· · ⊃ pn be a chain of prime ideals of A, and let q1 ⊃ ·· · ⊃ qm

(m < n) be a chain of prime ideals of B such that qi ∩ A = pi (1 ≤ i ≤ m). Then the chain
q1 ⊃ ·· · ⊃ qm can be extended to a chain q1 ⊃ ·· · ⊃ qn such that qi ∩ A = pi (1 ≤ i ≤ n).

Proof. As in (5.11) we reduce immediately to the case m = 1,n = 2. Then we have to
show that p2 is the contraction of a prime ideal in the ring Bq1 , or equivalently (3.16)
that Bq1p2 ∩ A = p2.

Every x ∈ Bq1p2 is of the form y/s, where y ∈ Bp2 and s ∈ B −q1. By (5.14), y is integral
over p2, and hence by (5.15) its minimal equation over K , the field of fractions of A, is of
the form

(5.2) y r +u1 y r−1 +·· ·+ur = 0

with u1, . . . ,ur in p2.

Now suppose that x ∈ Bq1p2 ∩ A. Then s = y x−1 with x−1 ∈ K , so that the minimal equa-
tion for s over K is obtained by dividing (5.2) by xr , and is therefore, say,

(5.3) sr + v1sr−1 +·· ·+ vr = 0

where vi = ui /xi . Consequently

(5.4) xi vi = ui ∈ p2 (1 ≤ i ≤ r ).

But s is integral over A, hence by (5.15) (with a = (1)) each vi is in A. Suppose x ∉ p2.
Then (5.4) shows that each vi ∈ p2, hence (5.3) shows that sr ∈ Bp2 ⊂ Bp1 ⊂ q1, and
therefore s ∈ q1, which is a contradiction. Hence x ∈ p2 and therefore Bq1p2 ∩ A = p2 as
required. □

The proof of the next proposition assumes some standard facts from field theory.

Proposition 5.17. Let A be an integrally closed domain, K its field of fractions, L a finite
separable algebraic extension of K , B the integral closure of A in L. Then there exists a
basis v1, . . . , vn of L over K such that B ⊂∑n

j=1 Av j .

Proof. If v is any element of L, then v is algebraic over K and therefore satifies an equa-
tion of the form

a0v r +a1v r−1 +·· ·+an = 0 (ai ∈ A).

Multiplying this equation by ar−1
0 , we see that a0v = u is integral over A, and hence is

in B . Thus, given any basis of L over K we may multiply the basis elements by suitable
elements of A to get a basis u1, . . . ,un such that each ui ∈ B .

Let T denote the trace (from L to K ). Since L/K is separable, the bilinear form (x, y) 7→
T (x y) on L (considered as a vector space over K ) is non-degenerate, and hence we have
a dual basis v1, . . . , vn of L over K , defined by T (ui v j ) = δi j . Let x ∈ B , say x = ∑

x j v j

(x j ∈ K ). We have xui ∈ B (since ui ∈ B) and therefore T (xui ) ∈ A by (5.15) (for the
trace of an element is a multiple of one of the coefficients in the minimal polynomial).
But T (xui ) =∑

j T (x j ui v j ) =∑
j x j T (ui v j ) =∑

j x jδi j = xi , hence xi ∈ A. Consequently
B ⊂∑

Av j . □
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5.4. Valuation rings. Let B be an integral domain, K its field of fractions. B is a valua-
tion ring of K if, for each x ̸= 0 either x ∈ B or x−1 ∈ B (or both).

Proposition 5.18.

(1) B is a local ring.
(2) If B ′ is a ring such that B ⊂ B ′ ⊂ K , then B ′ is a valuation ring of K .
(3) B is integrally closed (in K ).

Proof. (1) Let m be the set of non-units of B , so that x ∈m⇔ either x = 0 or x−1 ∉ B . If
a ∈ B and x ∈m we have ax ∈m, for otherwise (ax)−1 ∈ B and therefore x−1 = a ·(ax)−1 ∈
B . Next let x, y be non-zero elements of m. Then either x y−1 ∈ B of x−1 y ∈ B . If x y−1 ∈ B
then x + y = (1+ x y−1)y ∈ Bm ⊂m, and similarly if x−1 y ∈ B . Hence m is an ideal and
therefore B is a local ring by (1.6).

(2) Clear from the definitions.

(3) Let x ∈ K be integral over B . Then we have, say,

xn +b1xn−1 +·· ·+bn = 0

with the bi ∈ B . If x ∈ B there is nothing to prove. If not, then x−1 ∈ B , hence x =
−(b1 +b2x−1 +·· ·+bn x1−n) ∈ B . □

Let K be a field,Ω an algebraically closed field. Let Σ be the set of all pairs (A, f ), where
A is a subring of K and f is a homomorphism of A into Ω. We partially order the set Σ
as follows:

(A, f ) ≤ (A′, f ′) ⇔ A ⊂ A′ and f ′|A = f .

The conditions of Zorn’s lemma are clearly satisfied and therefore the set Σ has at least
one maximal element.

Let (B , g ) be a maximal element of Σ. We want to prove that B is a valuation ring of K .
The first step in the proof is

Lemma 5.19. B is a local ring and m= Ker(g ) is its maximal ideal.

Proof. Since g (B) is a subring of a field and therefore an integral domain, the ideal m=
Ker(g ) is prime. We can extend g to a homomorphism ḡ : Bm →Ω by putting ḡ (b/s) =
g (b)/g (s) for all b ∈ B and all s ∈ B −m, since g (s) will not be zero. Since the pair (B , g ) is
maximal it follows that B = Bm, hence is a local ring and m is its maximal ideal. □

Lemma 5.20. Let x be a non-zero element of K . Let B [x] be the subring of K generated by
x over B, and let m[x] be the extension of m in B [x]. Then either m[x] ̸= B [x] or m[x−1] ̸=
B [x−1].

Proof. Suppose that m[x] = B [x] and m[x−1] = B [x−1]. Then we shall have equations

u0 +u1x +·· ·+um xm = 1 (ui ∈m)(5.5)

v0 + v1x−1 +·· ·+ vn x−n = 1 (vi ∈m)(5.6)

in which we may assume that the degrees m,n are as small as possible. Suppose that
m ≥ n, and multiply (5.6) through by xn :

(5.7) (1− v0)xn = v1xn−1 +·· ·+ vn .

Since v0 ∈m, it follows from (5.19) that 1− v0 is a unit in B , and (5.7) may therefore be
written in the form

xn = w1xn−1 +·· ·+wn (w j ∈m).

Hence we can replace xm in (5.5) by w1xm−1 + ·· · + wn xm−n , and this contradicts the
minimality of the exponent m. □
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Theorem 5.21. Let (B , g ) be a maximal element of Σ. Then B is a valuation ring of the
field K .

Proof. We have to show that if x ̸= 0 is an element of K , then either x ∈ B or x−1 ∈ B .
By (5.20) we may as well assume that m[x] is not the unit ideal of the ring B ′ = B [x].
Then m[x] is contained in a maximal ideal m′ of B ′, and we have m′∩B =m (because
m′∩B is a proper ideal of B and contains m). Hence the embedding of B in B ′ induces
an embedding of the field k = B/m in the field B ′/m′; also k ′ = k[x̄] where x̄ is the image
of x in k ′, hence x̄ is algebraic over k, and therefore is a finite algebraic extension of k.

Now the homomorphism g induces an embedding ḡ of k in Ω, since by (5.19) m is the
kernel of g . SinceΩ is algebraically closed, ḡ can be extended to an embedding ḡ ′ of k ′
intoΩ. Composing ḡ ′ with the natural homomorphism B ′ → k ′, we have, say, g ′ : B ′ →Ω

which extends g . Since the pair (B , g ) is maximal, it follows that B ′ = B and therefore
x ∈ B . □

Corollary 5.22. Let A be a subring of a field K . Then the integral closure Ā of A in K is
the intersection of all the valuation rings of K which contain A.

Proof. Let B be a valuation ring of K such that A ⊂ B . Since B is integrally closed, by
(5.18)(3), it follows that Ā ⊂ B .

Conversely, let x ∉ Ā. Then x is not in the ring A′ = A[x−1]. Hence x−1 is a non-unit in
A′ and is therefore contained in a maximal ideal m′ of A′. LetΩ be an algebraic closure
of the field k ′ = A′/m′. Then the restriction to A of the natrual homomorphism A′ → k ′
defines a homomorphism of A →Ω. By (5.21) this can be extended to some valuation
ring B ⊃ A. Since x−1 maps to zero, it follows that x ∉ B . □

Proposition 5.23. Let A ⊂ B be integral domains, B finitely generated over A. Let v be
a non-zero element of B. Then there exists u ̸= 0 in A with the following property: any
homomorphism f of A into an algebraically closed field Ω such that f (u) ̸= 0 can be
extended to a homomorphism g of B intoΩ such that g (v) ̸= 0.

Proof. By induction on the number of generators of B over A we reduce immediately to
the case where B is generated over A by a single element x.

(1) Suppose x is trancendental overA, i.e., that no non-zero polynomial with coef-
ficients in A has x as a root. Let v = a0xn + a1xn−1 + ·· ·+ an , and take u = a0.
Then if f : A → Ω is such that f (u) ̸= 0, there exists ξ ∈ Ω such that f (a0)ξn +
f (a1)ξn−1 +·· ·+ f (a0) ̸= 0, because Ω is infinite. Define g : B →Ω extending f
by putting g (x) = ξ. Then g (v) ̸= 0, as required.

(2) Now suppose x is algebraic over A (i.e. over the field of fractions of A). Then so
is v−1, because v is a polynomial in x. Hence we have equations of the form

a0xm +a1xm−1 +·· ·+am = 0 (ai ∈ A)(5.8)

a′
0v−n +a′

1v1−n +·· ·+a′
n = 0 (a′

i ∈ A)(5.9)

Let u = a0a′
0, and let f : A →Ω be such that f (u) ̸= 0. Then f can be extended,

first to a homomorphism h : C → Ω, where C is a valuation ring containing
A[u−1]. From (5.8), x is integral over A[u−1], hence by (5.22) x ∈ C , so that C
contains B , and in particular v ∈ C . On the other hand, from (5.9), v−1 is inte-
gral over A[u−1], and therefore by (5.22) again is in C . Therefore v is a unit in C ,
and hence h(v) ̸= 0. Now take g to be the restriction of h to B .

□
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Corollary 5.24. Let k be a field and B a finitely generated k-algebra. If B is a field then it
is a finite algebraic extension of k.

Proof. Take A = k, v = 1 andΩ= algebraic closure of k. □

(5.24) is one form of Hilbert’s Nullstellensatz. For another proof, see (7.9).

5.5. Exercises.

(1) Let f : A → B be an intergal homomorphism of rings. Show that f ∗ : Spec(B) →
Spec(A) is a closed mapping, i.e., that it maps closed sets to closed sets. (This is
a geometrical equivalent of (5.10).)

(2) Let A be a subring of a ring B such that B is integral over A, let A → Ω be a
homomorphism of A into an algebraically closed field Ω. Show that f can be
extended to a homomorphism of B intoΩ [Use (5.10).]

(3) Let f : B → B ′ be a homomorphism of A-algebras, and let C be an A-algebra. If
f is integral, prove that f ⊗1 : B ⊗A C → B ′⊗A C is integral. (This includes (5.6),
(2) as a special case.)

(4) Let A be a subring of a ring B suich that B is integral over A. Let n be a maximal
ideal of B and let m = n∩ A be the corresponding maximal ideal of A. Is Bn

necessarily integral over Am? [Consider the subring k[x2 −1] of k[x], where k is
a field, and let n= (x −1). Can the element 1/(x +1) be integral?]

(5) Let A ⊂ B be rings, B integral over A.
(a) If x ∈ A is a unit in B then it is a unit in A.
(b) The Jacobson radical of A is the contraction of the Jacobson radical of B .

(6) Let B1, . . . ,Bn be integral A-algebras. Show that
∏n

i=1 Bi is an integral A-algebra.
(7) Let A be a subring of B , such that the set B − A is closed under multiplication.

Show that A is integrally closed in B .
(8) (a) Let A be a subring of an integral domain B and let C be the integral closure

of A in B . Let f , g be monic polynomials in B [x] such that f g ∈C [x]. Then
f , g are in C [x]. [Take a field containing B in which the polynomials f , g
split into linear factors: say f = ∏

(x −ξi ), g = ∏
(x −η j ). Each ξi and η j is

a root of f g , hence is integral over C . Hence the coefficients of f and g are
integral over C .]

(b) Prove the same result without assuming that B (or A) is an integral domain.
(9) Let A be a subring of a ring B and let C be the integral closure of A in B . Prove

that C [x] is the integral closure of A[x] in B [x]. [If f ∈ B [x] is integral over A[x],
then

f m + g1 f m−1 +·· ·+ gm = 0 (gi ∈ A[x]).

Ler r be an interger larger than m and the degrees of g1, . . . , gm , and let f1 =
f −xr , so that

( f1 +xr )m + g1( f1 +xr )m−1 +·· ·+ gm = 0

or say
f m

1 +h1 f m−1
1 +·· ·+hm = 0

where hm = (xr )m + g1(xr )m−1 + ·· ·+ gm ∈ A[x]. Now apply Exercise (8) to the
polynomials − f1 and f m−1

1 +h1 f m−2
1 +·· ·+hm−1.]

(10) A ring homomorphism f : A → B is said to have the going-up property (resp.
the going-down property) if the conclusion of the going-up theorem (5.11) (resp.
going-down theorem (5.16)) holds for B and its subring f (A). Let f ∗ : Spec(B) →
Spec(A) be the mapping associated with f .
(a) Consider the following three statements:

(i) f ∗ is a closed mapping.
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(ii) f has the going-up property.
(iii) For any prime ideal qof B , let p= qc . Then f ∗ : Spec(B/q) → Spec(A/p)

is surjective.
Prove that (10(a)i) ⇒ (10(a)i) ⇔ (10(a)iii). (See also Chapter 6, Exercise (11))

(b) Consider the following three statements:
(i) f ∗ is an open mapping.

(ii) f has the going-down property.
(iii) For any prime ideal q of B , if p= qc , then f ∗ : Spec(Bq) → Spec(Ap) is

surjective.
Prove that (10(b)i) ⇒ (10(b)ii) ⇔ (10(b)iii). (See also Chapter 7, Exercise
(24))

[To prove that (10(b)i) ⇒ (10(b)iii), observe that Bq is the direct limit of the rings
Bt where t ∈ B −q; hence, by Chapter 3, Exercise (26), we have f ∗(Spec(Bq)) =⋂

t f ∗(Spec(Bt )) = ⋂
f ∗(Yt ). Since Yt is an open neighbourhood of q in Y , and

since f ∗ is open, it follows that f ∗(Yt ) is an open neighbourhood of p in X and
therefore contains Spec(Ap).]

(11) Let f : A → B be a flat homomorphism of rings. Then f has the going-down
property. [Chapter 3, Exercise (18)]

(12) Let G be a finite group of automorphisms of a ring A, and let AG denote the
subring of G-invariants, that is of all x ∈ A such that σ(x) = x for all σ ∈G . Prove
that A is integral over AG . [If x ∈ A, observe that x is a root of the polynomial∏
σ∈G (t −σ(x)).]

Let S be a multiplicatively closed subset of A such that σ(S) ⊂ S for all σ ∈G ,
and let SG = S ∩ AG . Show that the action of G on A extends to an action on
S−1 A, and that (SG )−1 AG ≃ (S−1 A)G .

(13) In the situation of Exercise (12), let p be a prime ideal of AG , and let P be the
set of prime ideals of A whose contraction is p. Show that G acts transitively
on P . In particular, P is finite. [Let p1,p2 ∈ P and let x ∈ p1. Then

∏
σσ(x) ∈

p1 ∩ AG = p⊂ p2, hence σ(x) ∈ p2 for some σ ∈G . Deduce that p1 is contained in⋃
σ∈G σ(p2), and then apply (1.11) and (5.9).]

(14) Let A be an integrally closed domain, K its field of fractions and L a finite normal
separable extension of K . Let G be the Galois group of L over K and let B be the
integral closure of A in L. Show that σ(B) = B for all σ ∈G , and that A = BG .

(15) Let A,K as in Exercise (14), let L be any finite extension field of K , and let B
be the integral closure of A in L. Show that, if p is any prime ideal of A, then
the set pf prime ideals q of B which contract to p is finite (in other words, that
Spec(B) → Spec(A) has finite fibers).
[Reduce to the two cases (a) L is separable over K and (b) L is purely inseparable
over K . In case (a), embed L in a finite normal separable extension of K , and use
Exercises (13) and (14). In case (b), if q is a prime ideal of B such that q∩ A = p,
show that q is the set of all x ∈ B such that xpm ∈ p for some m ≥ 0, where p is the
characteristic of K , and hence that Spec(B) → Spec(A) is bijective in this case.]

Noether’s normalization lemma

(16) Let k be a field and let A ̸= 0 be a finitely generated k-algebra. Then there exist
elements y1, . . . , yr ∈ A which are algebraically independent over k and such that
A is integral over k[y1, . . . , yr ].

We shall assume that k is infinite. (The result is still true if k is finite, but
a different proof is needed.) Let x1, . . . , xn generate A as a k-algebra. We can
renumber the xi so that x1, . . . , xr are algebraically independent over k and each
of xr+1, . . . , xn is algebraic over k[x1, . . . , xr ]. Now proceed by induction on n.
If n = r there is nothing to do, so suppose n > r and the result true for n − 1
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generators. The generator xn is algebraic over k[x1, . . . , xn−1], hence there ex-
ists a polynomial f ̸= 0 in n variables such that f (x1, . . . , xn−1, xn) = 0. Let F
be the homogeneous part of highest degree in f . Since k is infinite, there exist
λ1, . . .λn−1 ∈ k such that F (λ1, . . . ,λn−1,1) ̸= 0. Put x ′

i = xi −λi xn (1 ≤ i ≤ n −1).
Show that xn is integral over the ring A′ = k[x ′

1, . . . , x ′
n−1], and hence that A is in-

tegral over A′. Then apply the inductive hypothesis to A′ to complete the proof.
From the proof it follows that y1, . . . , yr may be chosen to be linear combi-

nations of x1, . . . , xn . This has the following geometrical interpretation: if k is
algebraically closed and X is an affine algebraic variety in kn with coordinate
ring A ̸= 0, then there exists a linear subspace L of dimension r in kn and a
linear mapping of kn onto L which maps X onto L. [Use Exercise (2).]

Nullstellensatz (weak form)

(17) Let X be an affine algebraic variety in kn , where k is an algebraically closed field,
and I (X ) be the ideal of X in the polynomial ring k[t1, . . . , tn] (Chapter 1, Exer-
cise (27)). If I (X ) ̸= (1) then X is not empty.
[Let A = k[t1, . . . , tn]/I (X ) be the coordinate ring of X . Then A ̸= 0, hence by
Exercise (16) there exists a linear subspace L of dimension ≥ 0 in kn and a map-
ping of X onto L. Hence X ̸=∅.] Deduce that every maximal ideal in the ring
k[t1, . . . , tn] is of the form (t1 −a1, . . . , tn −an) where ai ∈ k.

(18) Let k be a field and let B be a finitely generated k-algebra. Suppose that B is
a field. Then B is a finite algebraic extension of k. (This is another version of
Hilbert’s Nullstellensatz . The following proof is due to Zariski. For other proofs,
see (5.24), (7.9).)

Let x1, . . . , xn generate B as k-algebra. The proof is by induction on n. If n = 1
the result is clearly true, so assume n > 1. Let A = k[x1] and let K = k(x1) be
the field of fractions of A. By the inductive hypothesis, B is a finite algebraic
extension of K , hence each of x2, . . . , xn satisfies a monic polynomial equation
with coefficients in K , i.e. coefficients of the form a/b where a and b are in A.
If f is the product of the denominators of all these coefficisnts, then each of
x2, . . . , xn is integral over A f . Hence B and therefore K is integral over A f .

Suppose x1 is transcendental over k. Then A is integrally closed, because
it is a unique factorization domain. Hence A f is integrally closed (5.12), and
therefore A f = K , which is clearly absurd. Hence x1 is algebraic over k, hence K
(and therefore B) is a finite extension of k.

(19) Deduce the result of Exercise (17) from Exercise (18).
(20) Let A be a subring of an integral domain B such that B is finitely generated over

A. Show that there exists s ̸= 0 in A and elements y1, . . . , yn in B , algebraically
independent over A and such that Bs is integral over B ′

s , where B ′ = A[y1, . . . , yn].
[Let S = A−{0} and let K = S−1 A, the field of fractions of A. Then S−1B is a finitely
generated K -algebra and therefore by the normalization lemma (Exercise (16))
there exist x1, . . . , xn in S−1B , algebraically independent over K and such that
S−1B is integral over K [x1, . . . , xn]. Let z1, . . . , zm generate B as an A-alebra. Then
each z j (regarded as an element of S−1B) is integral over K [x1, . . . , xn]. By writing
an equation of integral dependence for each z j , show that there exists s ∈ S such
that xi = yi /s (1 ≤ i ≤ n) with yi ∈ B , and such that each sz j is integral over B ′.
Deduce that this s satisfies the conditions stated.]

(21) Let A,B be as in Exercise (20). Show that there exists s ̸= 0 in A such that, ifΩ is
an algebraically closed field and f : A →Ω is a homomorphism for which f (s) ̸=
0, then f can be extended to a homomorphism B → Ω. [With the notation of
Exercise (20), f can be extended first to B ′, for example by mapping each yi to
0; then to B ′

s (because f (s) ̸= 0), and finally to Bs (by Exercise (2), because Bs is
integral over B ′

s ).]
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(22) Let A,B be as in Exercise (20). If the Jacobson radical of A is zero, then so is the
Jacobson radical of B .
[Let v ̸= 0 be an element of B . We have to show that there is a maximal ideal
of B which does not contain v . By applying Exercise (21) to the ring Bv and its
subring A, we obtain an element s ̸= 0 in A. Let m be a maximal ideal of A such
that s ∉ m, and let k = A/m. Then the canonical mapping A → k extends to a
homomorphism g of Bv into an algebraic closure Ω of k. Show that g (v) ̸= 0
and that Ker(g )∩B is a maximal ideal of B .]

(23) Let A be a ring. Show that the following are equivalent:
(a) Every prime ideal in A is an intersection of maximal ideals.
(b) In every homomorphic image of A the nilradical is equal to the Jacobson

radical.
(c) Every prime ideal in A which is not maximal is equal to the intersection of

the prime ideals which contain it strictly.
[The only hard part is (23c) ⇒ (23b). Suppose (23b) is false, then there is a prime
ideal which is not an intersection of maximal ideals. Passing to the quotient
ring, we may assume that A is an integral domain whose Jacobson radical R
is not zero. Let f be a non-zero element of R. Then A f ̸= 0, hence A f has a
maximal ideal, whose contraction in A is a prime ideal p such that f ∉ p, and
which is maximal with respect to this poperty. Then p is not maximal and is not
equal to the intersection of the prime ideals strictly containing p.]

A ring with the three equivalent properties above is called a Jacobson ring.
(24) Let A be a Jacobson ring (Exercise (23)) and B an A-algebra. Show that if B

is either (a) integral over A or (b) finitely generated as an A-algebra, then B is
Jacobson. [Use Exercise (22) for (b).]

In particular, every finitely generated ring, and every finitely generated alge-
bra over a field, is a Jacobson ring.

(25) Let A be a ring. Show that the following are equivalent:
(a) A is a Jacobson ring;
(b) Every finitely generated A-algebra B which is a field is finite over A.

[(25a) ⇒ (25b). Reduce to the case where A is a subring of B , and use Exercise
(21). If s ∈ A is as in Exercise (21), then there exists a maximal ideal m of A not
containing s, and the homomorphism A → A/m = k extends to a homomor-
phism g of B into the algebraic closure of k. Since B is a field, g is injective and
g (B) is algebraic over k, hence finite algebraic over k.
(25b) ⇒ (25a). Use criterion (23c) of Exercise 23. Let p be a prime ideal of A
which is not maximal, and let B = A/p. Let f be a non-zero element of B . Then
B f is not a field and therefore has a non-zero prime ideal, whose contraction in
B is a non-zero ideal p′ such that f ∉ p′.]

(26) Let X be a topological space. A subset of X is locally closed if it is the intersection
of an open set and a closed set, or equivalently if it is open in its closure.

The following conditions on a subset X0 of X are equivalent:
• Every non-empty locally closed subset of X meets X0;
• For every closed set E in X we have E ∩X0 = E ;
• The mapping U 7→U ∩ X0 of the collection of open sets of X onto the col-

lection of open sets of X0 is bijective.
A subset X0 satisfying these conditions is said to be very dense in X .

If A is a ring, show that the following are equivalent:
(a) A is a Jacobson ring;
(b) The set of maximal ideals of A is very dense in Spec(A);
(c) Every locally closed subset of Spec(A) consisting of a single point is closed.
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[(26b) and (26c) are geometrical formulations of conditions (23b) and (23c) of
Exercise 23.]

Valuation rings and valuations

(27) Let A,B be two local rings. B is said to dominate A if A is a subring of B and the
maximal ideal m of A is contained in the maximal ideal n of B (or, equivalently,
if m= n∩ A). Let K be a field and let Σ be the set of all local subrings of K . If Σ is
ordered by the relation of domination, show that Σ has maximal elements and
that A ∈Σ is maximal if and only if A is a valuation ring of K . [Use (5.21).]

(28) Let A be an integral domain, K its field of fractions. Show that the following are
equivalent:
(a) A is a valuation ring of K ;
(b) If a,b are any two ideals of A, then either a⊂ b of b⊂ a.

Deduce that if A is a valuation ring and p is a prime ideal of A, then Ap and A/p
are valuation rings of their field of fractions.

(29) Let A be a valuation ring of a field K . Show that every subring of K which con-
tains A is a local ring of A.

(30) Let A be a valuation ring of a field K . The group U of units of A is a subgroup of
the multiplicative group K × of K .

Let Γ = K ×/U . If ξ,η ∈ Γ are represented by x, y ∈ K , define ξ ≥ η to mean
x y−1 ∈ A. Show that this defines a totel ordering on Γ which is compatible with
the group structure (i.e., ξ ≥ η⇒ ξω ≥ ηω for all ω ∈ Γ). In other words, Γ is a
totally ordered abelian group. It is called the value group of A.

Let v : K × → Γ be the canonical homomorphism.
Show that v(x + y) ≥ min(v(x), v(y)) for all x, y ∈ K ×.

(31) Conversely, let Γ be a totally ordered abelian group (written additively), and let
K be a field. A valuation of K with values in Γ is a mapping v : K × → Γ such that
(a) v(x y) = v(x)+ v(y),
(b) v(x + y) ≥ min(v(x), v(y))

for all x, y ∈ K ×. Show that the set of elements x ∈ K × such that v(x) ≥ 0 is a
valuation ring of K . This ring is called the valuation ring of v , and the subgroup
v(K ×) of Γ is the value group of v .

Thus the concepts of valuation ring and valuation are essentially equivalent.
(32) Let Γ be a totally ordered abelian group. A subgroup ∆ of Γ is isolated in Γ if,

whenever 0 ≤β≤α and α ∈∆ we have β ∈∆. Let A be a valuation ring of a field
K , with value group Γ (Exercise 31). If p is a prime ideal of A, show that v(A−p)
is the set of elements ≥ 0 in an isolated subgroup ∆ of Γ, and that the mapping
so defined of Spec(A) into the set of isolated subgroups of Γ is bijective.

If p is a prime ideal of A, what are the value groups of the valuation rings
A/p, Ap?

(33) Let Γ be a totally ordered abelian group. We shall show how to construct a field
K and a valuation v of K with group Γ as value group. Let k be any field and let
A = k[Γ] be the group algebra of Γ over k. By definition, A is freely generated as
k-vector space by elements xα (α ∈ Γ) such that xαxβ = xα+β. Show that A is an
integral domain.

If u = λ1xα1 + ·· ·+λn xαn is any non-zero element of A, where the λi are all
̸= 0 and α1 < ·· · <αn , define v0(u) =α1. Show that the mapping v0 : A− {0} → Γ

satisfies conditions (31a) and (31b) of Exercise 31.
Let K be the field of fractions of A. Show that v0 can be uniquely extended to

a valuation v of K , and that the value group of v is precisely Γ.
(34) Let A be a valuation ring and K its field of fractions. Let f : A → B be a ring

homomorphism such that f ∗ : Spec(B) → Spec(A) is a closed mapping. Then if
g : B → K is any A-algebra homomorphism (i.e., if g ◦ f is the embedding of A
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in K ) we have g (B) = A.
[Let C = g (B); obviously C ⊃ A. Let n be a maximal ideal of C . Since f ∗ is closed,
m = n∩ A is the maximal ideal of A, whence Am = A. Also the local ring Cn

dominates Am. Hence by Exercise (27) we have Cn = A and therefore C ⊂ A.]
(35) From Exercises (1) and (3) it follows that, if f : A → B is integral and C is any

A-algebra, then the mapping ( f ⊗1)∗ : Spec(B ⊗A C ) → Spec(C ) is a closed map.
Conversely, suppose that f : A → B has this property and that B is an integral

domain. Then f is integral. [Replacing A by its image in B , reduce to the case
where A ⊂ B and f is the injection. Let K be the field of fractions of B and let
A′ be a valuation ring of B containing A. By (5.22) it is enough to show that A′
contains B . By hypothesis Spec(B ⊗A A′) → Spec(A′) is a closed map. Apply the
result of Exercise (34) to the homomorphism B ⊗A A′ → K defined by b ⊗ a′ 7→
ba′. It follows that ba′ ∈ A′ for all b ∈ B and all a′ ∈ A′; taking a′ = 1, we have
what we want.]

Show that the result just proved remains valid if B is a ring with only finitely
many minimal prime ideals (e.g., if B is Noetherian). [Let pi be the minimal
prime ideals. Then each composite homomorphism A → B → B/pi is integral,
hence A → ∏

(B/pi ) is integral, hence A → B/N is integral (where N is the nil-
radical of B), hence finally A → B is integral.]

6. CHAIN CONDITIONS

So far we have considered quite arbitrary commutative rings (with identity). To go fur-
ther, however, and obtain deeper theorems we need to impose some finiteness condi-
tions. The most convenient way is in the form of chain conditions. These apply both to
rings and modules, and in this chapter we consider the case of modules. Most of the ar-
guments are of a rather formal kind and because of this there is a symmetry between the
ascending and descending chains—a symmetry which disappears in the case of rings as
we shall see in subsequent chapters.

Let Σ be a set partially ordered by a relation ≤ (i.e., ≤ is reflexive and transitive and is
such that x ≤ y and y ≤ x together imply x = y).

Proposition 6.1. The following conditions on Σ are equivalent:

(1) Every increasing sequence x1 ≤ x2 ≤ . . . in Σ is stationary (i.e., there exists n such
that xn = xn+1 = . . . ).

(2) Every non-empty subset of Σ has a maximal element.

Proof. (1) ⇒ (2). If (2) is false there is a non-empty subset T of Σ with no maximal ele-
ment, and we can construct inductively a non-terminating strictly increasing sequence
in T .

(2) ⇒ (1). The set (xm)m≥1 has a maximal element, say xn . □

If Σ is the set of submodules of a module M , ordered by the relation ⊂, then (1) is called
the ascending chain condition (a.c.c. for short) and (2) the maximal condition. A module
M satisfying either of these equivalent conditions is said to be Noetherian (after Emmy
Noether). IfΣ is ordered by ⊃, then (1) is the descending chain condition (d.c.c. for short)
and (2) the minimal condition. A module M satisfying these is said to be Artinian (after
Emil Artin).

Examples. 1) A finite abelian group (as Z-module) satisfies both a.c.c. and d.c.c.

2) The ring Z (as Z-module) satisfies a.c.c. but not d.c.c. For if a ∈ Z and a ̸= 0 we have
(a)⊋ (a2)⊋ · · ·⊋ (an)⊋ . . . (strict inlusions).
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3) Let G be the subgroup of Q/Z consisting of all elements whose order is a power of p,
where p is a fixed prime. Then G has exactly one subgroup Gn of order pn for each n ≥ 0,
and G0 ⊊G1 ⊊ · · ·⊊Gn ⊊ . . . , so that G does not satisfy the a.c.c. On the other hand the
only proper subgroups of G are the Gn , so that G does satisfy d.c.c.

4) The group H of all rational numbers of the form m/pn (m,n ∈ Z,n ≥ 0) satisfies nei-
ther chain condition. For we have an exact sequence 0 → Z → H → G → 0, so that H
doesn’t satisfy d.c.c. because Z doesn’t; and H doesn’t satisfy a.c.c. because G doesn’t.

5) The ring k[x] (k a field, x an indeterminate) satisfies a.c.c. but not d.c.c. on ideals.

6) The polynomial ring k[x1, x2, . . . ] in an infinite number of indeterminates xn satis-
fies neither chain conditions on ideals: for the sequence (x1) ⊊ (x1, x2) ⊊ . . . is strictly
increasing, and the sequence (x1)⊋ (x2

1)⊋ (x3
1)⊋ . . . is strictly decreasing.

7) We shall later see that a ring which satisfies d.c.c. on ideals must also satisfy a.c.c. on
ideals. (This is not true in general for modules: see Examples 2), 3) above.)

Proposition 6.2. M is a Noetherian module ⇔ every submodule of M is finitely gener-
ated.

Proof. ⇒: Let N be a submodule of M , and let Σ be the set of all finitely generated
submodules of N . Then Σ is not empty (since 0 ∈ Σ) and therefore has a maximal ele-
ment, say N0. If N0 ̸= N , consider the submodule N0 + Ax where x ∈ N , x ∉ N0; this is
finitely generated and strictly contains N0, so we have a contradiction. Hence N = N0

and therefore N is finitely generated.

⇐: Let M1 ⊂ M2 ⊂ . . . be an ascending chain of submodules of M . Then N =⋃∞
n=1 Mn is

a submodule of M , hence finitely generated, say by x1, . . . , xr . Say xi ∈ Mni and let n =
maxr

i=1 ni ; then each xi ∈ Mn , hence Mn = M and therefore the chain is stationary. □

Because of (6.2), Noetherian modules are more important than Artinian modules: the
Noetherian condition is just the right finiteness condition to make a lot of theorems
work. However, many of the elementary formal properties apply equally to Noetherian
and Artinian modules.

Proposition 6.3. Let 0 → M ′ α−→M
β−→M ′′ → 0 be an exact sequence of A-modules. Then

(1) M is Noetherian ⇔ M ′ and M ′′ are Noetherian.
(2) M is Artinian ⇔ M ′ and M ′′ are Artinian.

Proof. We shall prove (1); the proof of (2) is similar.

⇒: An ascending chain of submodules of M ′ (or M ′′) gives rise to a chain in M , hence is
stationary.

⇐: Let (Ln)n≥1 be an ascending chain of aubmodules of M ; then
(
α−1(Ln)

)
is a chain in

M ′, and
(
β(Ln)

)
is a chain in M ′′. For large enough n both these chains are stationary,

and it follows that the chain (Ln) is stationary. □

Corollary 6.4. If Mi (1 ≤ i ≤ n) are Noetherian (resp. Artinian) A-modules, so is
⊕n

i=1 Mi .

Proof. Apply induction and (6.3) to the exact sequence

0 → Mn →
n⊕

i=1
Mi →

n−1⊕
i=1

Mi → 0

□
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A ring A is said to be Noetherian (resp. Artinian) if it is so as an A-module, i.e., if it
satisfies a.c.c. (resp. d.c.c.) on ideals.

Examples. 1) Any field is both Artinian and Noetherian; so is the ring Z/(n) (n ̸= 0). The
ring Z is Noetherian, but not Artinian (Example 2 above).

2) Any principal ideal domain is Noetherian (by (6.2): every ideal is finitely generated).

3) The ring k[x1, x2, . . . ] is not Noetherian (Example 6 above). But it is an integral do-
main, hence has a field of fractions. Thus a subring of a Noetherian ring need not be
Noetherian.

4) Let X be a compact infinitive Hausdorff space, C (X ) the ring of real-valued continu-
ous functions on X . Take a strictly decreasing sequence F1 ⊋ F2 ⊋ . . . of closed sets in
X , and let an = { f ∈C (X ) : f (Fn) = 0}. Then the an from a strictly increasing sequence of
ideals in C (X ): so C (X ) is not a Noetherian ring.

Proposition 6.5. Let A be a Noetherian (resp. Artinian) ring, M a finitely generated A-
module. Then M is Noetherian (resp. Artinian).

Proof. M is a quotient of An for some n: apply (6.4) and (6.3). □

Proposition 6.6. Let A be Noetherian (resp. Artinian), a an ideal of A. Then A/a is a
Noetherian (resp. Artinian) ring.

Proof. By (6.3) A/a is Noetherian (resp. Artinian) as an A-module, hence also as an
A/a-module. □

A chain of submodules of a module M is a sequence (Mi ) (0 ≤ i ≤ n) of submodules of
M such that

M = M0 ⊋ M1 ⊋ · · ·⊋ Mn = 0.

The length of the chain is n (the number of links). A composition series of M is a maximal
chain, that is one in which no extra submodules can be inserted: this is equivalent to
saying that each quotient Mi−1/Mi (1 ≤ i ≤ n) is simple (that is, has no submodules
except 0 and itself).

Proposition 6.7. Suppose that M has a composition series of length n. Then every com-
position series of M has length n, and every chain in M can be extended to a composition
series.

Proof. Let ℓ(M) denote the least length of a composition series of a module M . (ℓ(M) =
+∞ if M has no composition series.)

1) N ⊊ M ⇒ ℓ(N ) < ℓ(M). Let (Mi ) be a composition series of M of minimum length,
and consider the submodules Ni = N ∩ Mi of N . Since Ni−1/Ni ⊂ Mi−1/Mi and the
latter is a simple module, we have either Ni−1/Ni = Mi−1/Mi or Ni−1 = Ni ; hence, re-
moving repeated terms, we have a composition series of N , so that ℓ(N ) ≤ ℓ(M). If
ℓ(N ) = ℓ(M) = n, then Ni−1/Ni = Mi−1/Mi for each i = 1,2, . . . ,n; hence Mn−1 = Nn−1,
hence Mn−2 = Nn−2, . . . , and finally M = N .

2) Any chain in M has length ≤ ℓ(M). Let M = M0 ⊋ M1 ⊋ . . . be a chain of length k.
Then by 1) we have ℓ(M) > ℓ(M1) > ·· · > ℓ(Mk ) = 0, hence ℓ(M) ≥ k.

3) Consider any composition series of M . If it has length k, then k ≤ ℓ(M) by 2), hence
k = ℓ(M) by definition of ℓ(M). Hence all composition series have the same length.
Finally, consider any chain. If its length is ℓ(M) it must be a composition series, by 2);
if its length is < ℓ(M) it is not a composition series, hence not maximal, and therefore
new terms can be inserted until its length is ℓ(M). □
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Proposition 6.8. M has a composition series ⇔ M satisfies both chain conditions.

Proof. ⇒: All chains are of bounded length, hence both a.c.c. and d.c.c. hold.

⇐: Construct a composition series of M as follows. Since M = M0 satisfies the maximum
condition by (6.1), it has a maximal submodule M1 ⊊ M0. Similarly M1 has a maximal
submodule M2 ⊊ M1, and so on. Thus we have a stricly descending chain M0 ⊋ M1 ⊋ . . .
which by d.c.c. must be finite, and hence is a composition series of M . □

A module satisfying both a.c.c. and d.c.c. is therefore called a module of finite length. By
(6.7) all composition series of M have the same length ℓ(M), called the length of M . The
Jordan-Hölder theorem applies to modules of finite length: if (Mi )0≤i≤n and (M ′

i )0≤i≤n

are two composition series of M , there is a one-to-one correspondence between the set
of quotients (Mi−1/Mi )1≤i≤n and the set of quotients (M ′

i−1/M ′
i )1≤i≤n such that corre-

sponding quotients are isomorphic. The proof is the same as for finite groups.

Proposition 6.9. The length ℓ(M) is an additive function on the class of all A-modules
of finite length.

Proof. We have to show that if 0 → M ′ α−→M
β−→M ′′ → 0 is an exact sequence, then

ℓ(M) = ℓ(M ′)+ ℓ(M ′′). Take the image under α of any composition series of M ′ and
the inverse image under β of any composition series of M ′′; these fit together to give a
composition series of M , hence the result. □

Consider the particular case of modules over a field k, i.e., k-vector spaces:

Proposition 6.10. For k-vector spaces V the follwoing are equivalent:

(1) finite dimension;
(2) finite length;
(3) a.c.c.;
(4) d.c.c.

Moreover, if these conditions are satisfied, length=dimension.

Proof. (1) ⇒ (2) is elementary; (2) ⇒ (3), (2) ⇒ (4) from (6.8). Remains to prove (3) ⇒
(1) and (4) ⇒ (1). Suppose (1) is false, then there exists an infinite sequence (xn)n≥1 of
linearly independent elements of V . Let Un (resp. Vn) be the vector space spanned by
x1, . . . , xn (resp. xn+1, xn+2, . . . ). Then the chain (Un)n≥1 (resp. (Vn)n≥1) is infinite and
strictly ascending (resp. strictly descending). □

Corollary 6.11. Let A be a ring in which the zero ideal is a product m1 · · ·mn of (not
necessarily distinct) maximal ideals. Then A is Noetherian if and only if A is Artinian.

Proof. Consider the chain of ideals A ⊃ m1 ⊃ m1m2 ⊃ . . .m1 · · ·mn = 0. Each factor
m1 · · ·mi−1/m1 · · ·mi is a vector space over the field A/mi . Hence a.c.c. ⇔ d.c.c. for each
factor. But a.c.c. (resp. d.c.c.) for each factor ⇔ a.c.c. (resp. d.c.c.) for A, by repeated
application of (6.3). Hence a.c.c. ⇔ d.c.c. for A. □
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6.1. Exercises.

(1) (a) Let M be a Noetherian A-module and u : M → M a module homomor-
phism. If u is surjective, then u is an isomorphism.

(b) If M is Artinian and u is injective, then again u is an isomorphism.
[For (1a), consider the submodules Ker(un); for (1b), consider the quotient

modules Coker(un).]
(2) Let M be an A-module. If every non-empty set of finitely generated submodules

of M has a maximal element, then M is Noetherian.
(3) Let M be an A-module and let N1, N2 be submodules of M . If M/N1 and M/N2

are Noetherian, so is M/(N1∩N2). Similarly for Artinian in place of Noetherian.
(4) Let M be a Noetherian A-module and let a be the annihilator of M in A. Prove

that A/a is a Noetherian ring.
If we replace Noetherian by Artinian in this result, is it still true?

(5) A topological space X is said to be Noetherian if the open subsets of X satisfy
the ascending chain condition (or, equivalently, the maximal condition). Since
closed subsets are complements of open subsets, it comes to the same thing
to say that the closed subsets of X satisfy the descending chain condition (or,
equivalently, the minimal condition). Show that, if X is Noetherian, then every
subspace of X is Noetherian, and that X is quasi-compact.

(6) Prove that the following is equivalent:
(a) X is Noetherian.
(b) Every open subspace of X is quasi-compact.
(c) Every subspace of X is quasi-compact.

(7) A Noetherian space is a finite union of irreducible closed subspaces. [Consider
the set Σ of closed subsets of X which are not finite unions of irreducible closed
subspaces.] Hence the set of irrducible components of a Noetherian space is
finite.

(8) If A is a Noetherian ring then Spec(A) is a Noetherian topological space. Is the
converse true?

(9) Deduce from Exercise (8), that the set of minimal primes ideals in a Noetherian
ring is finite.

(10) If M is a Noetherian module (over an arbitrary ring A) then Supp (M) is a closed
Noetherian subspace of Spec(A).

(11) Let f : A → B be a ring homomorphism and suppose that Spec(B) is a Noether-
ian space (Exercise (5)). Prove that f ∗ : Spec(B) → Spec(A) is a closed mapping
if and only if f has the going-up property (Chapter 5, Exercise (10)).

(12) Let A be a ring such that Spec(A) is a Noetherian space. Show that the set of
prime ideals of A satifies the ascending chain condition. Is the converse true?

7. NOETHERIAN RINGS

We recall that a ring is called to be Noetherian if it satisfies the following three equivalent
conditions:

(1) Every non-empty set of ideals in A has a maximal element.
(2) Every ascending chain of ideals in A is stationary.
(3) Every ideal in A is finitely generated.

(The equivalence of these conditions was proved in (6.1) and (6.2)).

Noetherian rings are by far the most important class of rings in commutative algebra:
we have seen some examples already in Chapter 6. In this chapter we shall first show
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that Noetherian rings reproduce themselves under various familiar operations—in par-
ticular we prove the famous basis theorem of Hilbert. We then proceed to make a num-
ber of important deductions from the Noetherian condition, including the existence of
primary decompositions.

Proposition 7.1. If A is Noetherian and φ is a homomorphissm of A onto a ring B, then
B is Noetherian.

Proof. This follows from (6.6), since B ≃ A/a, where a= Ker(φ). □

Proposition 7.2. Let A be a subring of B; suppose that A is Noetherian and that B is
finitely generated as an A-module. Then B is Noetherian (as a ring).

Proof. By (6.5) B is Noetherian as an A-module, hence also as a B-module. □

Example. B = Z[i ], the ring of Gaussian integers. By (7.2) B is Noetherian. More gener-
ally, the ring of integers in any algebraic number field is Noetherian.

Proposition 7.3. If A is Noetherian ans S is any multiplicatively closed subset of A, then
S−1 A is Noetherian.

Proof. By (3.11)(1) and (1.17)(3) the ideals of S−1 A are in one-to-one order-preserving
correspondence with the contracted ideals of A, hence satisfy the maximal condition.
(Alternate proof: if a is any ideal of A, then a has a finite set of generators, say x1, . . . , xn ,
and it is clear that S−1a is generated by x1/1, . . . , xn/1.) □

Corollary 7.4. If A is Noetherian and p is a prime ideal of A, then Ap is Noetherian. □

Theorem 7.5 (Hilbert’s Basis Theorem). If A is Noetherian, then the polynomial ring
A[x] is Noetherian.

Proof. Let a be an ideal in A[x]. The leading coefficients of the polynomials in a form
an ideal l in A. Since A is Noetherian, l is finitely generated, say by a1, . . . , an . For each
i = 1, . . . ,n there is a polynomial fi ∈ A[x] of the form fi = ai xri + (lower terms). Let
r = maxn

i=1 ri . The fi generate an ideal a′ ⊂ a in A[x].

Let f = axm+ (lower terms) be any element of a; we have a ∈ l. If m ≥ r , write a =∑n
i=1 ui ai , where ui ∈ A; then f −∑

ui fi xm−ri is in a and has degree < m. Proceeding
in this way, we can go on subtracting elements of a′ from f until we get a polynomial g ,
say, of degree < r ; that is, we have f = g +h, where h ∈ a′.
Let M be the A-module generated by 1, x, . . . , xr ; then what we have proved is that a =
(a∩ M) + a′. Now M is a finitely generated A-module, hence is Noetherian by (6.5),
hence a∩M is finitely generated (as an A-module) by (6.2). If g1, . . . , gm generate a∩M
it is clear that the fi and the g j generate a. Hence a is finitely generated and so A[x] is
Noetherian. □

Remark. It is also true that A Noetherian ⇒ A[[x]] Noetherian (A[[x]] being the ring of
formal power series in x with coefficients in A). The proof runs almost parallel to that
of (7.5) except one starts with the terms of lowest degree in the power series belonging
to a. See also (10.27).

Corollary 7.6. If A is Noetherian so is A[x1, . . . , xn].

Proof. By induction on n from (7.5). □

Corollary 7.7. Let B be a finitely generated A-algebra. If A is Noetherian, then so is B.
In particular, every finitely generated ring, and every finitely generated algebra over a
field, is Noetherian.
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Proof. B is homomorphic image of a polynomial ring A[x1, . . . , xn],which is Noetherian
by (7.6). □

Proposition 7.8. Let A ⊂ B ⊂C be rings. Suppose that A is Noetherian, that C is finitely
generated as an A-algebra and that C is either (1) finitely generated as a B-module or (2)
integral over B. Then B is finitely generated as an A-algebra.

Proof. It follows from (5.1) and (5.2) that the conditions (1) and (2) are equivalent in
this situation. So we may concentrate on (1).

Let x1, . . . , xm generate C as an A-algebra, and let y1, . . . , yn generate C as a B-module.
Then there exist expressions of the form

xi =
∑

j
bi j y j (bi j ∈ B)(7.1)

yi y j =
∑
k

bi j k yk (bi j k ∈ B)(7.2)

Let B0 be the algebra generated over A by the bi j and the bi j k . Since A is Noetherian, so
is B0 by (7.7), and A ⊂ B0 ⊂ B .

Any element of C is a polynomial in the xi with coefficients in A. Substituting (7.1) and
making repeated use of (7.2) shows that each element of C is a linear combination of
the y j with coefficients in B0 and hence is finitely generated as a B0-module. Since B0

is Noetherian, and B is a submodule of C , it follows (by (6.5) and (6.2)) that B is finitely
generated as a B0-module. Since B0 is finitely generated as an A-algebra, it follows that
B is finitely generated as an A-algebra. □

Proposition 7.9. Let k be a field, E a finitely generated k-algebra. If E is a field then it is
a finite algebraic extension of k.

Proof. Let = k[x1, . . . , xn]. If E is not algebraic over k then we can renumber the xi so
that x1, . . . , xr are algebraically independent over k, where r ≥ 1, and each of xr+1, . . . , xn

is algebraic over the field F = k(x1, . . . , xr ). Hence E is a finite algebraic extension of F
and therefore finitely generated as an F -module. Applying (7.8) to k ⊂ F ⊂ E , it follows
that F is a finitely generated k-algebra, say F = k[y1, . . . , ys ]. Each y j is of the form f j /g j ,
where f j and g j are polynomials in x1, . . . , xr .

Now there are infinitely many irreducible polynomials in the ring k[x1, . . . , xr ] (adapt
Euclid’s proof of the existence of infinitely many prime numbers). Hence there is an
irreducible polynomial h which is prime to each of the g j (for example h = g1g2 · · ·gs +
1 would do) and the element h−1 of F could not be a polynomial in the y j . This is a
contradiction. Hence E is algebraic over k, and therefore finite algebraic. □

Corollary 7.10. Let k be a field, A a finitely generated k-algebra. Let m be a maximal
ideal of A. Then the field A/m is a finite algebraic extension of k. In particular, if k is
algebraically closed then A/m≃ k.

Proof. Take E = A/m in (7.9). □

(7.10) is the so-called weak version of Hilbert’s Nullstellensatz (= theorem of zeroes).
The proof given here is due to Artin and Tate. For its geometrical meaning, and the
strong form of the theorem, see the Exercises at the end of this chapter.
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7.1. Primary decomposition in Noetherian rings. The next two lemmas show that ev-
ery ideal ̸= (1) in a Noetherian ring has a primary decomposition.

An ideal a is said to be irreducible if

a= b∩ c⇒ (a= b or a= c)

Lemma 7.11. In a Noetherian ring A every ideal is a finite intersection of irreducible
ideals.

Proof. Suppose not; then the set of ideals in A for which the lemma is false is not empty,
hence has a maximal element a. Since a is reducible, we have a= b∩ c where b⊋ a and
c⊋ a. Hence each of b, c is a finite intersection of irreducible ideals and therefore so is
a: contradiction. □

Lemma 7.12. In a Noetherian ring every irreducible ideal is primary.

Proof. By passing to the quotient ring, it is enough to show that if the zero ideal is ir-
reducible then it is primary. Let x y = 0 with y ̸= 0, and consider the chain of ideals
Ann(x) ⊂ Ann(x2) ⊂ . . . . By the a.c.c., this chain is stationary, i.e. we have Ann(xn) =
Ann(xn+1) = . . . for some n. It follows that (xn)∩ (y) = 0; for if a ∈ (y) then ax = 0, and if
a ∈ (xn) then a = bxn , hence bxn+1 = 0, hence b ∈ Ann(xn+1) = Ann(xn), hence bxn = 0;
that is, a = 0. Since 0 is irreducible, and (y) ̸= 0 we must therefore have xn = 0, and this
shows that (0) is primary. □

From these two lemmas we have at once

Theorem 7.13. In a Noetherian ring A every ideal has a primary decomposition. □

Hence all the results of Chapter 4 apply to Noetherian rings.

Proposition 7.14. In a Noetherian ring A, every ideal a contains a power of its radical.

Proof. Let x1, . . . , xk generate r (a): say xni
i ∈ a (1 ≤ i ≤ k). Let m =∑k

i=1(ni −1)+1. Then

r (a)m is generated by the products xr1
1 · · ·xrk

k with
∑

ri = m; from the definition of m
we must have ri ≥ ni for at least one index i , hence each such monomial lies in a, and
therefore r (a)m ⊂ a. □

Corollary 7.15. In a Noetherian ring the nilradical is nilpotent.

Proof. Take a= (0) in (7.14). □

Corollary 7.16. Let A be a Noetherian ring, m a maximal ideal of A, q any ideal of A.
Then the following are equivalent:

(1) q is m-primary;
(2) r (q) =m;
(3) mn ⊂ q⊂m for some n > 0.

Proof. (1) ⇒ (2) is clear; (2) ⇒ (1) from (4.2); (2) ⇒ (3) from (7.14); (3) ⇒ (2) by taking
radicals: m= r (mn) ⊂ r (q) ⊂ r (m) =m. □

Proposition 7.17. Let a ̸= (1) be an ideal in a Noetherian ring. Then the prime ideals
which belong to a are precisely the prime ideals which occur in the set of ideals (a : x)
(x ∈ A).
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Proof. By passing to A/a we may assume that a = 0. Let
⋂n

i=1 qi = 0 be a minimal pri-
mary decomposition of the zero ideal, and let pi be the radical of qi . Let ai =⋂n

j ̸=i q j ̸= 0.

Then from the proof of (4.5) we have r (Ann(x)) = pi for any x ̸= 0 in ai , so that Ann(x) ⊂
pi .

Since qi is pi -primary, by (7.14) there exists an integer m such that pm
i ⊂ qi , and therefore

aip
m
i ⊂ ai ∩pm

i ⊂ ai ∩qi = 0. Let m ≥ 1 be the smallest integer such that aip
m
i = 0, and

let x be a non-zero element in aip
m−1
i . Then px = 0, therefore for such an x we have

Ann(x) ⊃ pi , and hence Ann(x) = pi .

Conversely, if Ann(x) is a prime ideal p, then r (Ann(x)) = p and so by (4.5) p is a prime
ideal belonging to 0. □

7.2. Exercises.

(1) Let A be a non-Noetherian ring and let Σ be the set of ideals in A which are not
finitely generated. Show that Σ has maximal elements and that the maximal
elements of Σ are prime ideals. [Let a be a maximal element of Σ, and suppose
that there exist x, y ∈ A such that x ∉ a and y ∉ a and x y ∈ a. Show that there
exists a finitely generated ideal a0 ⊂ a such that a0 + (x) = a+ (x), and that a =
a0+x ·(a : x). Since (a : x) strictly contains a, it is finitely generated and therefore
so is a.]

Hence a ring in which every prime ideal is finitely generated is Noetherian
(I.S. Cohen).

(2) Let A be a Noetherian ring and let f =∑∞
n=0 an xn ∈ A[[x]]. Prove that f is nilpo-

tent if and only if each an is nilpotent.
(3) Let a be an irreducible ideal in a ring A. Then the following are equivalent:

(a) a is primary;
(b) for every multiplicatively closed subset S of A we have (S−1a)c = (a : x) for

some x ∈ S;
(c) the sequence (a : xn) is stationary, for every x ∈ A.

(4) Which of the following rings are Noetherian?
(a) The ring of rational functions of z having no pole on the circle |z| = 1.
(b) The ring of power series in z with a positive radius of convergence.
(c) The ring of power series in z with an infinite radius of convergence.
(d) The ring of polynomials in z whose first k derivatives vanish at the origin

(k being a fixed integer).
(e) The ring of polynomials in z, w all of whose partial derivatives with respect

to w vanish for z = 0.
In all cases the coefficients are complex numbers.

(5) Let A be a Noetherian ring, B a finitely generated A-algebra, G a finite group of
A-automorphisms of B , and BG the set of all elements of B which are left fixed
by every element of G . Show that BG is a finitely generated A-algebra.

(6) If a finitely generated ring K is a field, it is a finite field.
[If K has characteristic 0, we have Z ⊊ Q ⊂ K . Since K is finitely generated over
Z it is finitely generated over Q, hence by (7.9) is a finitely generated Q-module.
Now apply (7.8) to obtain a contradiction. Hence K is of characteristic p > 0,
hence is finitely generated as Z/(p)-algebra. Use (7.9) to complete the proof.]

(7) Let X be an affine algebraic variety given by a family of equations fα(t1, . . . , tn) =
0 (α ∈ I ) (Chapter 1, Exercise (27)). Show that there exists a finite subset I0 of I
such that X is given by the equations fα(t1, . . . , tn) = 0 for α ∈ I0.

(8) If A[x] is Noetherian, is A necessarily Noetherian?
(9) Let A be a ring such that

(a) for each maximal ideal m of A, the local ring Am is Noetherian;
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(b) for each x ̸= 0 in A, the set of maximal ideals of A which contain x is finite.
Show that A is Noetherian.
[Let a ̸= 0 be an ideal in A. Let m1, . . . ,mr be the maximal ideals which contain
a. Choose x0 ̸= 0 in a and let m1, . . . ,mr+s be the maximal ideals which contain
x0. Since mr+1, . . . ,mr+s do not contain a there exists x j ∈ a such that x j ∉mr+ j

(1 ≤ j ≤ s). Since each Ami is Noetherian, the extension of a in Ami is finitely
generated. Hence there exist xs+1, . . . , xt in a whose image in Ami generate Ami a
for i = 1, . . . ,r . Let a0 = (x0, . . . , xt ). Show that a0 and a have the same extension
in Am for every maximal ideal m, and deduce by (3.9) that a0 = a.]

(10) Let M be a Noetherian A-module. Show that M [x] (Chapter 2, Exercise (6)) is a
Noetherian A[x]-module.

(11) Let A be a ring such that each local ring Ap is Noetherian. Is A necessarily Noe-
therian?

(12) Let A be a ring and B a faithfully flat A-algebra (Chapter 3, Exercise (16)). If B is
Noetherian, show that A is Noetherian. [Use the ascending chain condition.]

(13) Let f : A → B be a ring homomorphism of finite type and let f ∗ : Spec(B) →
Spec(A) be the mapping associated with f . Show that the fibers of f ∗ are Noe-
therian subspaces of B .

Nullstellensatz, strong form

(14) Let k be an algebraically closed field, let A = k[t1, . . . , tn] be the polynomial ring
and let a be an ideal in A. Let V be the variety in kn defined by the ideal a, so
that V is the set of all x = (x1, . . . , xn) ∈ kn such that f (x) = 0 for all f ∈ a. Let I (V )
be the ideal of V , i.e. the ideal of all polynomials g ∈ A such that g (x) = 0 for all
x ∈V . Then I (V ) = r (a).
[It is clear that r (a) ⊂ I (V ). Conversely, let f ∉ r (a), then there is a prime ideal
p containing a such that f ∉ p. Let f̄ be the image of f in B = A/p, let C = B f =
B [1/ f̄ ], and let m be a maximal ideal of C . Since C is a finitely generated k-
algebra we have C /m≃ k, by (7.9). The images xi in C /m of the generators ti of
A thus define a point x = (x1, . . . , xn) ∈ kn , and the construction shows that x ∈V
and f (x) ̸= 0.]

(15) Let A be a Noetherian local ring, m its maximal ideal and k its residue field, and
let M be a finitely generated A-module. Then the following are equivalent:
(a) M is free;
(b) M is flat;
(c) the mapping of m⊗M into A⊗M is injective;
(d) TorA

1 (k, M) = 0.
[ To show (15d) ⇒ (15a), let x1, . . . , xn be elements of M whose images in M/mM
form a k-basis of this vector space. By (2.8), the xi generate M . Let F be a free A-
module with basis e1, . . . ,en and define φ : F → M by φ(ei ) = xi . Let E = Ker(φ).
Then the exact sequence 0 → E → F → M → 0 gives us an exact sequence

0 → k ⊗A E → k ⊗A F
1⊗φ−→k ⊗M → 0

Since k⊗F and k⊗M are vector spaces of the same dimension over k, it follows
that 1⊗φ is an isomorphism, hence k⊗E = 0, hence E = 0 by Nakayama’s Lemma
(E is finitely generated because it is a submodule of F , and A is Noetherian).]

(16) Let A be a Noetherian ring, M a finitely generated A-module. Then the following
are equivalent:
(a) M is a flat A-module;
(b) Mp is a free Ap-module, for all prime ideals p;
(c) Mm is a free Am-module, for all maximal ideals m.

In other words, flat = locally free. [Use Exercise (15).]
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(17) Let A be a ring and M a Noetherian A-module. Show (by imitating the proofs of
(7.11) and (7.12)) that every submodule N of M has a primary decomposition
(Chapter 4, Exercises (20)-(23)).

(18) Let A be a Noetherian ring, p a prime ideal of A, and M a finitely generated
A-module. Show that the following are equivalent:
(a) p belongs to 0 in M ;
(b) there exists x ∈ M such that Ann(x) = p;
(c) there exists a submodule of M isomorphic to A/p.

Deduce that there exists a chain of submodules

0 = M0 ⊊ M1 ⊊ · · ·⊊ Mr = M

such that each quotient Mi /Mi−1 is of the form A/pi , where pi is a prime ideal
of A.

(19) Let a be an ideal in a Noetherian ring A. let

a=
r⋂

i=1
bi =

s⋂
i=1

ci

be two minimal decompositions of a as intersections of irreducible ideals. Prove
that r = s and that (possible after re-indexing the ci ) r (bi ) = r (ci ) for all i .
[Show that for each i = 1, . . . ,r there exists j such that

a= b1 ∩ . . .bi−1 ∩ c j ∩bi+1 ∩·· ·∩br ]

State and prove an analogous result for modules.
(20) Let X be a topological space and let F be the smallest collection of subsets of X

which contains all open subsets of X and is closed with respect to the formation
of finite intersections and complements.
(a) Show that a subset E of X belongs to F if and only if E is a finite union of

sets of the form U ∩C , where U is open and C is closed.
(b) Suppose that X is irreducible and let E ∈F. Show that E is dense in X (i.e.,

Ē = X ) if and only if E contains a non-empty open set in X .
(21) Let X be a Noetherian topological space (Chapter 6, Exercise (5)) and let E ⊂ X .

Show that E ∈ F if and only if, for each irreducible closed set X0 ⊂ X , either
E ∩X0 ̸= X0 or else E ∩ X0 contains a non-empty open subset of X0. [Suppose
E ∉F. Then the collection of closed sets X ′ ⊂ X such that E∩X ′ ∉F is not empty
and therefore has a maximal element X0. Show that X0 is irreducible and then
that each of the alternatives above leads to the conclusion that E ∩X0 ∈F.]
The sets belonging to F are called the constructible subsets of X .

(22) Let X be a Noetherian topological space and let E be a subset of X . Show that
E is open in X if and only if, for each irreducible closed subset X0 in X , either
E ∩X0 =∅ or else E ∩X0 contains a non-empty open subset of X0. [The proof is
similar to that of Exercise (21).]

(23) Let A be a Noetherian ring, f : A → B a ring homomorphism of finte type (so
that B is Noetherian). Let X = Spec(A), Y = Spec(B) and let f ∗ : Y → X be the
mapping associated with f . Then the image under f ∗ of a constructible subset
E of Y is a constructible subset of X .
[By Exercise (20) it is enough to take E =U ∩C where U is open and C is closed
in Y ; then, replacing B by a homomorphic image, we reduce to the case where
E is open in Y . Since Y is Noetherian, E is quasi-compact and therefore a fi-
nite union of open sets of the form Spec(Bg ). Hence reduce to the case E = Y .
To show that f ∗(Y ) is constructible use the criterion of Exercise (21). Let X0

be an irreducible closed subset of X such that f ∗(Y )∩ X0 is dense in X0. We
have f ∗(Y )∩ X0 = f ∗( f ∗−1(X0)), and f ∗−1(X0) = Spec(A/p⊗A B), where X0 =
Spec(A/p). Hence reduce to the case where A is an integral domain and f is
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injective. If Y1, . . . ,Yn are the irreducible components of Y , it is enough to show
that some f ∗(Yi ) contains a non-empty open set in X . So finally we are brought
down to the situation in which A,B are integral domains and f is injective (and
still of finite type); now use Chapter 5, Exercise (21) to complete the proof.]

(24) With the notation and hypotheses of Exercise (23), f ∗ is an open mapping ⇔ f
has the going-down property (Chapter 5, Exercise (10)). [Suppose f has the
going-down property. As in Exercise (23), reduce to proving that E = f ∗(Y ) is
open in X . The going-down property asserts that if p ∈ E and p′ ⊂ p, then p′ ∈ E :
in other words, that if X0 is an irreducible closed subset of X and X0 meets E ,
then E ∩X0 is dense in X0. By Exercises (20) and (22), E is open in X .]

(25) Let A be Noetherian, f : A → B of finite type and flat (i.e., B is flat as an A-
module). Then f ∗ : Spec(B) → Spec(A) is an open mapping. [Exercise (24) and
Chapter 5, Exercise (11).]

Grothendieck groups

(26) Let A be a Noetherian ring and let F (A) denote the set of all isomorphism classes
of finitely generated A-modules. Let C be the free abelian group generated by
F (A). With each short exact sequence 0 → M ′ → M → M ′′ → 0 of finitely gen-
erated A-modules we associate the element (M ′)− (M)+ (M ′′) of C , where (M)
is the isomorphism class of M , etc. Let D be the subgroup of C generated by
these elements, for all short exact sequences. The quotient group C /D is called
the Grothendieck group of A, and is denoted by K (A). If M is a finitely generated
A-module, let γ(M), or γA(M), denote the image of (M) in K (A).
(a) Show that K (A) has the following universal poperty: for each additive func-

tionλon the class of finitely generated A-modules, with values in an abelian
group G , there exists a unique homomorphism λ0 : K (A) → G such that
λ(M) =λ0(γ(M)) for all M .

(b) Show that K (A) is generated by the elements γ(A/p), where p is a prime
ideal of A. [Use Exercise (18).]

(c) If A is a field, or more generally if A is a principal ideal domain, then K (A) ≃
Z.

(d) Let f : A → B be a finite ring homomorphism. Show that restriction of
scalars gives rise to a homomorphism f! : K (B) → K (A) such that f!(γB (N )) =
γA(N ) for a B-module N . If g : B → C is another finite ring homomor-
phism, show that (g ◦ f )! = f! ◦ g !.

(27) Let A be a Noetherian ring and let F1(A) be the set of all isomorphism classes of
finitely generated flat A-modules. Repeating the construction of Exercise (26)
we obtain a group K1(A). Let γ1(M) denote the image of (M) in K1(A).
(a) Show that tensor product of modules over A induces a commutative ring

structure on K1(A), such that γ1(M) ·γ1(N ) = γ1(M ⊗N ). The identity ele-
ment of this ring is γ1(A).

(b) Show that tensor product induces a K1(A)-module structure on the group
K (A), such that γ1(M) ·γ(N ) = γ(M ⊗N ).

(c) If A is (Noetherian) local ring, then K1(A) ≃ Z.
(d) Let f : A → B be a ring homomorphism, B being Noetherian. Show that

extension of scalars gives rise to a ring homomorphism f ! : K1(A) → K1(B)
such that f !(γ1(M)) = γ1(B ⊗A M). [If M is flat and finitely generated over
A, then B ⊗A M is flat and finitely generated over B .] If g : B →C is another
ring homomorphism (with C Noetherian), then (g ◦ f )! = g ! ◦ f !.

(e) If f : A → B is a finite ring homomorphism then

f!( f !(x)y) = x f!(y)
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for x ∈ K1(A), y ∈ K (B). In other words, regarding K (B) as a K1(A)-module
by restriction of scalars, the homomorphism f ! is a K1(A)-module homo-
morphism

Remark. Since F1(A) is a subset of F (A) we have a group homomorphism ϵ :
K1(A) → K (A), given by ϵ(γ1(M)) = γ(M). If the ring A is finite dimensional and
regular, i.e., if all its local rings Ap are regular (Chapter 11) it can be shown that
ϵ is an isomorphism.

8. ARTIN RINGS

An Artin ring is one which satisfies the d.c.c. (or equivalently the minimal condition) on
ideals.

The apparent symmetry with Noetherian rings is however misleading. In fact we will
show that an Artin ring is necessarily Noetherian and of a very special kind. In a sense
an Artin ring is the simplest kind of a ring after a field, and we study them not because
of their generality but because of their simplicity.

Proposition 8.1. In an Artin ring A every prime ideal is maximal.

Proof. Let p be a prime ideal of A. Then B = A/p is an Artinian integral domain. Let
x ∈ B , x ̸= 0. By the d.c.c. we have (xn) = (xn+1) for some n, hence xn = xn+1 y for some
y ∈ B . Since B is an integral domain and x ̸= 0, it follows that we may cancel xn , hence
x y = 1. Hence x has an inverse in B , and therefore B is a field, so that p is a maximal
ideal. □

Corollary 8.2. In an Artin ring the nilradical is equal to the Jacobson radical. □

Proposition 8.3. An Artin ring has only a finite number of maximal ideals.

Proof. Consider the set of all finite intersectionsm1∩·· ·∩mr , where themi are maximal
ideals. This set has a minimal element, say m1 ∩ ·· ·∩mn ; hance for any maximal ideal
m we have m∩m1 ∩ ·· ·∩mn =m1 ∩ ·· ·∩mn , and therefore m ⊃m1 ∩ ·· ·∩mn . By (1.11)
m⊃mi for some i , hence m=mi since mi is maximal. □

Proposition 8.4. In an Artin ring the nilradical N is nilpotent.

Proof. By d.c.c. we have Nk =Nk+1 = ·· · = a say, for some k > 0. Suppose a ̸= 0, and let
Σ denote the set of all ideals b such that ab ̸= 0. Then Σ is not empty, since a ∈ Σ. Let
c be a minimal element of Σ; then there exists x ∈ c such that xa ̸= 0; we have (x) ⊂ c,
hence (x) = c by the minimality of c. But (xa)a = xa2 = xa ̸= 0, and xa ⊂ (x), hence
xa = (x) (again by minimality). Hence x = x y for some y ∈ a, and therefore x = x y =
x y2 = ·· · = x yn . But y ∈ a=Nk ⊂N, hence y is nilpotent and therefore x = x yn = 0. This
contradicts the choice of x, therefore a= 0. □

By a chain of prime ideals of a ring A we mean a finite strictly increasing sequence
p0 ⊊ p1 ⊊ · · · ⊊ pn ; the length of the chain is n. We define the dimension of A to be
the supremum of the lenghts of all chains of prime ideals in A; it is an integer ≥ 0 or +∞
(assuming A ̸= 0). A field has dimension 0; the ring Z has dimension 1.

Theorem 8.5. A ring A is Artin ⇔ A is Noetherian and dim A = 0.
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Proof. ⇒: By (8.1) we have dim A = 0. Let mi (1 ≤ i ≤ n) be the distinct maximal ideals
of A (8.3). Then

∏n
i=1m

k
i ⊂ (

⋂n
i=1mi )k =Nk = 0. Hence by (6.11) A is Noetherian.

⇐: Since the zero ideal has a primary decomposition (7.13), A has only a finite number
of minimal prime ideals, and these are all maximal since dim A = 0. Hence N=⋂n

i=1mi

say; we have Nk = 0 by (7.15), hence
∏n

i=1m
k
i = 0 as in the previous part of the proof.

Hence by (6.11) A is an Artin ring. □

If A is an Artin local ring with maximal ideal m, then m is the only prime ideal of A and
therefore m is the nilradical of A. Hence every element of m is nilptotent, and m itself is
niltpotent. Every element of A is either a unit or is nilpotent. An example of such a ring
is Z/(pn), where p is a prime and n ≥ 1.

Proposition 8.6. Let A be a Nowtherian local ring, m its maximal ideal. Then exactly one
of the following statements is true:

(1) mn ̸=mn+1 for all n;
(2) mn = 0 for some n, in which case A is an Artin local ring.

Proof. Suppose mn =mn+1 for some n. By Nakayama’s lemma (2.6) we have mn = 0. Let
p be any prime ideal of A. Then mn ⊂ p, hence (taking radicals) m = p. Hence m is the
only prime ideal of A and therefore A is Artinian. □

Theorem 8.7 (structure theorem for Artin rings). An Artin ring A is uniquely (up to iso-
morphism) a finite direct product of Artin local rings.

Proof. Let mi (1 ≤ i ≤ n) be the distinct maximal ideals of A. From the proof of (8.5)
we have

∏n
i=1m

k
i = 0 for some k > 0. By (1.16) the ideals mk

i are coprime in pairs,

hence
⋂
mk

i = ∏
mk

i by (1.10). Consequently by (1.10) again the natural mapping A →∏n
i=1 A/mk

i is an isomorphism. Each A/mk
i is an Artin local ring, hence A is the direct

product of Artin local rings.

Conversely, suppose A ≃∏n
i=1 Ai , where the Ai are Artin local rings. Then for each i we

have a natural surjective homomoprhism (projection on the i th factor) φi ; A → Ai . Let
ai = Ker(φi ). By (1.10) the ai are pairwise coprime, and

⋂
ai = 0. Let qi be the unique

prime ideal of Ai , and let pi be its contraction φ−1
i (qi ). The ideal pi is prime and there-

fore maximal by (8.1). Since qi is nilpotent it follows that ai is pi -primary, and hence⋂
ai = 0 is a primary decomposiotn of the zero ideal in A. Since the ai are pairwise

coprime, so are the pi , and they are therefore isolated prime ideals of 0. Hence all the
primary components ai are isolated, and therefore uniquely determined by A, by the
2nd uniqueness theorem (4.11). Hence the rings Ai ≃ A/ai are uniquely determined by
A. □

Example. A ring with only one prime ideal need not be Noetherian (and hence not an
Artin ring). Let A = k[x1, x2, . . . ] be the polynomial ring in a countably infinite set of
indeterminates xn over a field k, and let a be the ideal (x1, x2

2 , . . . , xn
n , . . . ). The ring B =

A/a has only one prime ideal (namely the image of (x1, x2, . . . , xn , . . . )), hence B is a local
ring of dimension 0. But B is not Noetherian, for it is not difficult to see that its prime
ideal is not finitely generated.

If A is a local ring, m its maximal ideal, k = A/m its residue field, the A-module m/m2

is annihilated by m and therefore has the structure of a k-vector space. If m is finitely
generated (e.g., if A is Noetherian), the images in m/m2 of a set of generators of m will
span m/m2 as a vector space, and therefore dimk (m/m2) is finite. (See (2.8).)

Proposition 8.8. Let A be an Artin local ring. Then the following are equivalent:
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(1) every ideal in A is principal;
(2) the maximal ideal m is principal;
(3) dimk (m/m2) ≤ 1.

Proof. (1) ⇒ (2) ⇒ (3) is clear.

(3) ⇒ (1): If dimk (m/m2) = 0, then m=m2, hence m= 0 by Nakayam’s lemma (2.6), and
therefore A is a field and there is nothing to prove.

If dimk (m/m2) = 1, then m is a principal ideal by (2.8) (take M =m there), say m = (x).
Let a be an ideal of A, other than (0) or (1). We have m=N, hence m is nilpotent by (8.4)
and therefore there exists an integer r such that a ⊂ mr , a ̸⊂ mr+1; hence there exists
y ∈ a such that y = axr , y ∉ (xr+1); consequently a ∉ (x) and hence a=mr = (xr ). Hence
a is principal. □

Example. The rings Z/(pn) (p prime), k[x]/( f n) ( f irreducible) satisfy the conditions of
(8.7). On the other hand, the Artin local ring k[x2, x3]/(x4) does not: here m is generated
by x2 and x3 (mod x4), so that m2 = 0 and dimk (m/m2) = 2.

8.1. Exercises.

(1) Let q1 ∩ ·· ·∩qn = 0 be a minimal primary decomposition of the zero ideal in a
Noetherian ring, and let qi be pi -primary. Let p(r )

i be the r th symbolic power
of pi (Chapter 4, Exercise (13)). Show that for each i = 1, . . . ,n there exists an
integer ri such that p(ri )

i ⊂ qi .
(2) Let A be a Noetherian ring. Prove that the following are equivalent:

(a) A is Artinian;
(b) Spec(A) is discrete and finite;
(c) Spec(A) is discrete.

(3) Let k be a field and A a finitely generated k-algebra. Prove that the following are
equivalent:
(a) A is Artinian;
(b) A is a finite k-algebra.

[To prove (3a) ⇒ (3b), use (8.3) to reduce to the case where A is an Artin local
ring. By the Nullstellensatz, the residue field of A is a finite extension of k. Now
use the fact that A is of finite length as an A-module. To prove (3b) ⇒ (3a),
observe that the ideals of A are k-vector subspaces and therefore satisfy d.c.c.]

(4) Let f : A → B be a ring homomorphism of finite type. Consider the following
statements:
(a) f is finite;
(b) the fibres of f ∗ are discrete subspaces of Spec(B);
(c) for each prime ideal p of A, the ring B ⊗A k(p) is a finite k(p)-algebra (k(p)

is the residue field of Ap);
(d) the fibres of f ∗ are finite.

Prove that (4a) ⇒ (4b) ⇔ (4c) ⇒ (4d) [Use Exercises (2) and (3)]
If f is integral and the fibres of f ∗ are finite, is f necessarily finite?

(5) In Chapter 5, Exercise (16), show that X is a finite covering of L (i.e. the number
of points of X lying over a given point of L is finite and bounded).

(6) Let A be a Noetherian ring and q a p-primary ideal in A. Consider chains of pri-
mary ideals from q to p. Show that all such chains are of finite bounded length,
and that all maximal chains have the same length.
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9. DISCRETE VALUATION RINGS AND DEDEKIND DOMAINS

As we have indicated before, algebraic numer theory is one of the historical sources
of commutative algebra. In this chapter we specialize down to the case of interest in
number theory, namely to Dedekind domains. We deduce the unique factorization of
ideals in Dedekind domains from the general primary decomposition theorems. Al-
though a direct approach is of course possible one obtains more insight our way into
the precise context of number theory in commutative algebra. Another important class
of Dedekind domains occurs in connection with non-singular algebraic curves. In fact
the geometrical picture of the Dedekind condition is: non-singular of dimension one.

The last chapter dealt with Noetherian rings of dimension 0. Here we start by consider-
ing the next simplest case, namely Noetherian integral domains of dimension one: i.e.,
Noetherian domains in which every non-zero prime ideal is maximal. The first result is
that in such a ring we have a unique factorization theorem for ideals:

Proposition 9.1. Let A be a Noetherian domain of dimension 1. Then every non-zero
ideal a in A can be uniquely expressed as a product of primary ideals whose radicals are
all distinct.

Proof. Since A is Noetherian, a has a minimal primary decomposition a = ⋂n
i=1 qi by

(7.13), where each qi is say pi -primary. Since dim A = 1 and A is an integral domain,
each non-zero prime ideal of A is maximal, hence the pi are distinct maximal ideals
(since pi ⊃ qi ⊃ a ̸= 0), and are therefore pairwise coprime. Hence by (1.16) the qi are
pairwise coprime and therefore by (1.10) we have

∏
qi =⋂

qi . Hence a=∏
qi .

Conversely, if a=∏
qi , the same argument shows that a=⋂

qi ; this is a minimal primary
decomposition of a, in which each qi is an isolated primary component, and is therefore
unique by (4.11). □

Let A be a Noetherian domain of dimension one in which every primary ideal is a prime
power. By (9.1), in such a ring we shall have unique factorization of non-zero ideals into
products of prime ideals. If we localize A with respect to a non-zero prime ideal p we
get a local ring Ap satisfying the same conditions as A, and therefore in Ap every non-
zero ideal is a power of the maximal ideal. Such local rings can be characterized in other
ways.

9.1. Discrete valuation rings. Let K be a field. A discrete valuation on K is a mapping v
of K × onto Z (where K × = K − {0} is the multiplicative group of K ) such that

(1) v(x y) = v(x)+ v(y), i.e.,v is a homomorphism;
(2) v(x + y) ≥ min(v(x), v(y)).

The set consisting of 0 and all x ∈ K × such that v(x) ≥ 0 is a ring, called the discrete
valuation ring of v . It is a valuation ring of the field K . It is sometimes convenient to
extend v to the whole of K by putting v(0) =∞.

Examples. 1) K = Q. Take a fixed prime p, then any non zero x ∈ Q can be written
uniquely in the form pa y , where a ∈ Z and both numerator and denominator of y are
prime to p. Define vp (x) to be a. The valuation ring of vp is the local ring Z(p).

2) K = k(x), where k is a field and x an indeterminate. Take a fixed irreducible polyno-
mial f ∈ k[x] and define v f just as in 1). The valuation ring of v f is then the local ring of
k[x] with respect to the prime ideal ( f ).
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An integral domain A is a discrete valuation ring if there is a discrete valuation v of its
field of fractions K such that A is the valuation ring of v . By (5.18), A is a local ring, and
its maximal ideal m is the set of all x ∈ K such that v(x) > 0.

If two elements x, y of A have the same value, that is if v(x) = v(y), then v(x y−1) = 0 and
therefore u = x y−1 is a unit in A. Hence (x) = (y).

If a ̸= 0 is an ideal in A, there is a least integer n such that v(x) = n for some x ∈ a. It
follows that a contains every y ∈ A with v(y) ≥ n, and therefore the only ideals ̸= 0 in A
are the ideals mn = {y ∈ A : v(y) ≥ n}. These form a single chain m⊋m2 ⊋m3 ⊋ . . . , and
therefore A is Noetherian.

Moreover, since v : K × → Z is surjective, there exists x ∈m such that v(x) = 1, and then
m = (x), and mn = (xn) (n ≥ 1). Hence m is the only non-zero prime ideal of A, and A
is thus a Noetherian local domain of dimension one in which every non-zero ideal is a
power of the maximal ideal. In fact many of these properties are characteristic of disrete
valuation rings.

Proposition 9.2. Let A be a Noetherian local domain of dimension one, m its maximal
ideal k = A/m its residue field. Then the following are equivalent:

(1) A is a discrete valuation ring;
(2) A is integrally closed;
(3) m is a principal ideal;
(4) dimk (m/m2) = 1;
(5) Every non-zero ideal is a power of m;
(6) There exists x ∈ A such that every non-zero ideal is of the form (xn), n ≥ 0.

Proof. Before we start going the rounds, we make two remarks:

(A) If a is an ideal ̸= 0, (1), then a is m-primary and a⊃mn for some n.
For r (a) =m, since m is the only non-zero prime ideal; now use (7.16).

(B) mn ̸=mn+1 for all n ≥ 0. This follows from (8.6).

(1) ⇒ (2). By (5.18).

(2) ⇒ (3). Let a ∈m and a ̸= 0. By remark (A) there exists an integer n such that mn ⊂ (a),
mn−1 ̸⊂ (a). Choose b ∈mn−1 and b ∉ (a), and let x = a/b ∈ K , the field of fractions of
A. We have x−1 ∉ A (since b ∉ (a)), hence x−1 is not integral over A, and therefore by
(5.1) we have x−1m ̸⊂m (for if x−1m ⊂m, m would be a faithful A[x−1]-module, finitely
generated as an A-module). But x−1m ⊂ A by construction of x, hence x−1m = A and
therefore m= Ax = (x).

(3) ⇒ (4). By (2.8) we have dimk (m/m2) ≤ 1, and by remark (B) m/m2 ̸= 0.

(4) ⇒ (5). Let a be an ideal ̸= 0,(1). By remark (A) we have a⊃mn for some n; from (8.8)
(applied to A/mn) it follows that a is a power of m.

(5) ⇒ (6). Be remark (B), m ̸= m2, hence there exists x ∈ m, x ∉ m2. But (x) = mr by
hypothesis, hence r = 1, (x) =m, (xn) =mn .

(6) ⇒ (1). Clearly (x) =m, hence (xn) ̸= (xn+1) by remark (B). Hence if a is any non-zero
element of A, we have (a) = (xn) for exactly one value of n. Define v(a) = n and extend
v to K × by defining v(ab−1) = v(a)− v(b). Check that v is well-defined and is a discrete
valuation, and that A is the valuation ring of v . □
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9.2. Dedekind domains.

Theorem 9.3. Let A be a Noetherian domain of dimension one. Then the following are
equivalent:

(1) A is integrally closed;
(2) Every primary ideal in A is a prime power;
(3) Every local ring Ap (p ̸= 0) is a discrete valuation ring.

Proof. (1) ⇔ (3) by (9.2) and (5.13).

(2) ⇔ (3). Use (9.2) and the fact that primary ideals and powers of ideals behave well
under localization: (4.8), (3.11). □

A ring satisfying the condition of (9.3) is called a Dedekind domain.

Corollary 9.4. In a Dedekind domain every non-zero ideal has a unique factorization as
a product of prime ideals.

Proof. (9.1) and (9.3). □

Examples. 1) Any principal ideal domain A. For A is Noetherian (since every ideal is
finitely generated) and of dimension one (Example 3 after (1.6)). Also every local ring
Ap (p ̸= 0) is a principal ideal domain, hence by (9.2) a discrete valuation ring; hence A
is a Dedekind domain by (9.3).

2) Let K be an algebraic number field (a finite extension of Q). Its ring of integers A is the
integral closure of Z in K . (For example, if K = Q(i ), then A = Z[i ], the ring of Gaussian
integers.) Then A is a Dedekind domain:

Theorem 9.5. The ring of integers in an algebraic number field K is a Dedekind domain.

Proof. K is a separable extension of Q (because the characteristic is zero), hence by
(5.17) there is a basis v1, . . . , vn of K over Q such that A ⊂ ∑

Zv j . Hence A is finitely
generated as a Z-module and therefore Noetherian. Also A is integrally closed by (5.5).
To complete the proof we must show that every non-zero prime of A is maximal, and
this follows from (5.8) and (5.9): (5.9) shows that p∩Z ̸= 0, hence p∩Z is a maximal ideal
of Z and therefore p is maximal in A by (5.8). □

Remark. The unique factorization theorem (9.4) was originally proved for rings of inte-
gers in algebraic number fields. The uniqueness theorems of Chapter 4 may be regarded
as generalizations of this result: prime powers have to be replaced by primary ideals,
and products by intersections.

9.3. Fractional ideals. Let A be an integral domain, K its field of fractions. An A-module
M ⊂ K is a fractional ideal of A if xM ⊂ A for some x ̸= 0 in A. In particular, the ordinary
ideals (now called integral ideals) are fractional ideals (take x = 1). Any element u ∈ K
generates a fractional ideal, denoted by u or Au, and called principal. If M is a fractional
ideal, the set of all x ∈ K such that xM ⊂ A is denoted by (A : M).

Every finitely generated A-submodule M of K is a fractional ideal. For if M is generated
by x1, . . . , xn ∈ K , we can write xi = yi z−1 (1 ≤ i ≤ n) where yi and z are in A, and then
zM ⊂ A. Conversely, if A is Noetherian, every fractional ideal is finitely generated, for it
is of the form x−1a for some integral ideal a.

An A-submodule M of K is an invertible ideal if there exists a submodule N of K such
that M N = A. The module N is then unique and equal to (A : M), for we have N ⊂
(A : M) = (A : M)M N ⊂ AN = N . It follows that M is finitely generated, and therefore a
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fractional ideal: for since M · (A : M) = A there exist xi ∈ M and yi ∈ (A : M) (1 ≤ i ≤ n)
such that

∑
xi yi = 1, and hence for any x ∈ M we have x = ∑

(yi x)xi : each yi x ∈ A, so
that M is generated by x1, . . . , xn .

Clearly every non-zero principal fractional ideal (u) is invertible, its inverse being (u−1).
The invertible ideals form a group with respect to multiplication, whose identity ele-
ment is A = (1).

Invertibility is a local property:

Proposition 9.6. For a fractional ideal M, the following are equivalent:

(1) M is invertible;
(2) M is finitely generated and, for each prime ideal p, Mp is invertible;
(3) M is finitely generated and, for each maximal ideal m, Mm is invertible.

Proof. (1) ⇒ (2): Ap = (M ·(A : M))p = Mp ·(Ap : Mp) by (3.11) and (3.15) (for M is finitely
generated, becuas invertible).

(2) ⇒ (3): as usual.

(3) ⇒ (1): Let a = (M · (A : M)), which is an integral ideal. For each maximal ideal we
have am = Mm · (Am : Mm) (by (3.11) and (3.15)) = Am because Mm is invertible. Hence
a ̸⊂m. Consequently a= A and therefore M is invertible. □

Proposition 9.7. Let A be a local domain. Then A is a discrete valuation ring ⇔ every
non-zero fractional ideal of A is invertible.

Proof. ⇒: Let X be a generator of the maximal idealm of A, and let M ̸= 0 by a fractional
ideal. Then there exists y ∈ A such that y M ⊂ A: thus y M is an integral ideal, say (xr ),
and therefore M = (xr−s ) where s = v(y).

⇐: Every non-zero integral ideal is invertible and therefore finitely generated, so that
A is Noetherian. It is therefore enough to prove that every non-zero integral ideal is
a power of m. Suppose this is false; let Σ be the set of non-zero ideals which are not
powers of m, and let a be a maximal element of Σ. Then a ̸= m, hence a ⊊ m; hence
m−1a⊊m−1m = A is a proper (integral) ideal, and m−1a ⊃ a. If m−1a = a, then a =ma
and therefore a = 0 by Nakayama’s lemma (2.6); hence m−1a ⊋ a and hence m−1a is a
power of m (by the maximality of a). Hence a is a power of m: contradiction. □

The global counterpart of (9.7) is

Theorem 9.8. Let A be an integral domain. Then A is a Dedekind domain ⇔ every non-
zero fractional ideal of A is invertible.

Proof. ⇒: Let M ̸= 0 be a fractional ideal. Since A is Noetherian, M is finitely generated.
For each prime ideal p ̸= 0, Mp is a fractional ideal ̸= 0 of the discrete valuation ring Ap,
hence is invertible by (9.7). Hence M is invertible, by (9.6).

⇐: Every non-zero integral ideal is invertible, hence finitely generated, hence A is Noe-
therian. We shall show that each Ap (p ̸= 0) is a discrete valuation ring. For this it is
enough to show that each integral ideal ̸= 0 in Ap is invertible, and then use (9.7). Let
b ̸= 0 be an (integral) ideal in Ap, and let a= bc = b∩A. Then a is invertible, hence b= ap
is invertible by (9.7). □

Corollary 9.9. If A is a Dedekind domain, the non-zero fractional ideals of A form a
group with respect to multiplication. □
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This group is called the group of ideals of A; we denote it by I . In this terminology (9.4)
says that I is a free (abelian) group, generated by the non-zero prime ideals of A.

Ler K × denote the multiplicative group of the field of fractions K of A. Each u ∈ K ×
defines a fractional ideal (u), and the mapping u 7→ (u) is a homomorphism φ : K × → I .
The image P of φ is the group of principal fractional ideals: the quotient group H = I /P
is called the ideal class group of A. The kernel U of φ is the set of all u ∈ K × such that
(u) = (1), so that it is the group of units of A. We have an exact sequence

1 →U → K × → I → H → 1.

Remarks. For the Dedekind domains that arise in number theory, there are classical
theorems relating to the groups H and U . Let K be an algebraic number field and let A
be its ring of integers, which is a Dedekind domain by (9.5). In this case:
1) H is a finite group. Its order h is the class number of the field K . The following are
equivalent: (a) h = 1; (b) I = P ; (c)A is a principal ideal domain; (d) A is a unque factor-
ization domain.

2) U is a finitely generated group. More precisely, we can specify the number of genera-
tors of U . First, the elements of finite order in U are just the roots of unity which lie in K ,
and they form a finite cyclic group W ; U /W is torsion-free. The number of generators
of U /W is given as follows: if (K : Q) = n there are n distinct embeddings K → C (the
field of complex numbers). Of these, say r1 map K into R, and the rest pair off (if α is
one, then ω◦α is another, where ω is the automorphism of C defined by ω(z) = z̄) into
say r2 pairs: thus r1 +2r2 = n. The number of generators of U /W is then r1 + r2 −1.

The proofs of these results belong to algebraic number theory and not to commutative
algebra: they require techniques of a different nature from those used in this book.

Examples. 1) K = Q(
p−1); n = 2,r1 = 0,r2 = 1,r1 + r2 −1 = 0. The only units in Z[i ] = A

are the roots of unity ±1,±i .

2) K = Q(
p

2); n = 2,r1 = 2,r2 = 0,r1 + r2 −1 = 1. W = {±1}, and U /W is infinite cyclic.
W = {±1}, and U /W is infinite cyclic. In fact the units in A = Z[

p
2] are ±(1+p

2)n , where
n is any rational integer.

9.4. Exercises.

(1) Let A be a Dedekind domain, S a multiplicatively closed subset of A. Show that
S−1 A is either a Dedekind domain or the field of fractions of A.

Suppose that S ̸= A−{0}, and let H , H ′ be the ideal class groups of A and S−1 A
respectively. Show that extension of ideals induces a surjective homomorphism
H → H ′.

(2) Let A be a Dedekind domain. If f = a0+a1x+·· ·+an xn is a polynomial with co-
efficients in A, the content of f is the ideal c( f ) = (a0, . . . , an) in A. Prove Gauss’s
lemma that c( f g ) = c( f )c(g ). [Localize at each maximal ideal.]

(3) A valuation ring (other than a field) is Noetherian if and only if it is a discrete
valuation ring.

(4) Let A be a local domain which is not a field and in which the maximal ideal m is
principal and

⋂∞
n=1 = 0. Prove that A is a discrete valuation ring.

(5) Let M be a finitely generated module over a Dedekind domain. Prove that M is
flat ⇔ M is torsion-free.
[Use Chapter 4, Exercise (13) and Chapter 7, Exercise (16).]

(6) Let M be a finitely generated torsion module (T (M) = M) over a Dedekind do-
main A. Prove that M is uniquely representable as a finite direct sum of modules
A/pni

i , where pi are non-zero prime ideals of A. [For each p ̸= 0, Mp is a torsion
Ap-module; use the structure theorem for modules over a principal ideal do-
main.]
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(7) Let A be a Dedekind domain and a ̸= 0 an ideal in A. Show that every ideal in
A/a is principal.

Deduce that every ideal in A can be generated by at most 2 elements.
(8) Let a,b,c be three ideals in a Dedekind domain. Prove that

a∩ (b+ c) = (a∩b)+ (a∩ c)

a+ (b∩ c) = (a+b)∩ (a+ c)

[Localize]
(9) (Chinese Remainder Theorem). Let a1, . . . ,an be ideals and let x1, . . . , xn be

elements in a Dedekind domain A. Then the system of congruences x ≡ xi

(mod ai ) (1 ≤ i ≤ n) has a solution x in A ⇔ xi ≡ x j (mod ai + a j ) whenever
i ̸= j .
[This is equivalent to saying that the sequence of A-modules

A
φ−→

n⊕
i=1

A/ai
ψ−→⊕

i< j
A/(ai +a j )

is exact, where φ and ψ are defined as follows: φ(x) = (x +a1, . . . , x +an); ψ(x1 +
a1, . . . , xn +an) has (i , j )-component xi −x j +ai +a j . To show that this sequence
is exact it is enough to show that it is exact when localized at any p ̸= 0: in other
words we may assume that A is a discrete valuation ring, and then it is easy.]

10. COMPLETIONS

In classical algebraic geometry (i.e. over the field of complex numbers) we can use tran-
scendental methods. This means that we regard a rational function as an analytic func-
tion (of one or more variables) and consider its power series expansion about a point. In
abstract algebraic geometry the best we can do is to consider the corresponding formal
power series. This is not so powerful as in the holomorphic case but it can be a very
useful tool. The process of replacing polynomials by formal power series is an example
of a general device known as completion. Another important instance of completion
occurs in number theory in the formation of p-adic numbers. If p is a prime number
in Z we can work in the various quotient rings Z/pn Z: in other words, we can try and
solve congruences modulo pn for higher and higher values of n. This is analoguous to
the successive approximation given by the terms of a Taylor expansion and, just as it is
convenient to introduce the p-adic numbers, these being the limit in a certain sense of
Z/pn Z as n →∞. In one respect, however, the p-adic numbers are more complicated
than formal power series (in, say, one variable x). Whereas the polynomials of degree n
are naturally embedded in the power series, the group Z/pn Z cannot be embedded in Z.
Although a p-adic integer can be thought of as a power series

∑
an pn (0 ≤ an < p) this

representation doen not behave well under the ring operations.

In this chapter we shall describe the general process of adic completion—the prime p
being replaced by a general ideal. It is most conveniently expressed in topological terms
but the reader should beware of using the topology of the real numbers as an intuitive
guide. Instead he should think of the power series topology in which a power series is
small if it has only terms of high order. Alternatively he can think of the p-adic topology
on Z, in which an integer is small if it is divisible by a hight power of p.

Completion, like localization, is a method of simplifying things by concentrating atten-
tion near a point (or prime). It is, however, a more drastic simplification than local-
ization. For example, in algebraic geometry the local ring of a non-singular point on a
variety of dimension n always has for its completion the ring of formal power series in
n variables (this will essentially be proved in Chapter 11). On the other hand the local
rings of two such points cannot be isomorphic On the other hand the local rings of two
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such points cannot be isomorphic unless the varieties on which they lie are birationally
equivalent (this means that the fields of fractions of the two local rings are isomorphic).

Two of the important properties of localization are that it preserves exactness and the
Noetherian property. The same is true for completion—when we restrict to finitely gen-
erated modules—but the proofs are much harder and take up most of this chapter. An-
other important result is the theorem of Krull which identifies the part of a ring which
is killed by completion. Roughly speaking, Krull’s Theorem is the analogue of the fact
that an analytic function is determined by the coefficients of its Taylor expansion. This
analogy is clearest for a Noetherian local ring in which case the theorem just asserts that⋂
mn = 0 where m is the maximal ideal. Both Krull’s Theorem and the exactness of com-

pletion are easy consequences of the well-known Artin-Rees Lemma, and we accord this
lemma a central place in our treatment.

For the study of completion we shall find it necessary to introduce graded rings. The
prototype of a graded ring is the ring of polynomials k[x1, . . . , xn], the grading ideal be-
ing the usual one obtained by taking the degree of each variable to be 1. Just as un-
graded rings are the foundation for affine algebraic geometry, so graded rings are the
foundation for projective algebraic geometry. They are therefore of considerable geo-
metric importance. The important construction of the associated graded ring Ga(A) of
an ideal a of A, which we shall meet, has a very definite geometrical interpretation. For
example, if A is the local ring of a point P on a variety V with a as maximal ideal, then
Ga(A) corresponds to the projective tangent cone at P , i.e. all the lines through P which
are tangent to V at P . This geometrical picture should help to explain the significance
of Ga(A) in connection with the properties of V near P and in particular in connection
with the study of the completion Â.

10.1. Topologies and completions. Let G be a topological abelian group (written addi-
tively), not necessarily Hausdorff: thus G is both a topological space and an abelian
group, and the two structures on G are compatible in the sense that the mappings
G ×G → G and G → G , defined by (x, y) 7→ x + y and x 7→ −x respectively, are contin-
uous. If {0} is closed in G , then the diagonal is closed in G ×G (being the inverse image
of {0} under the mapping (x, y) 7→ x − y) and so G is Hausdorff. If a is a fixed element of
G the translation Ta defined by Ta(x) = x +a is a homeomorphism of G onto G (for Ta

is continuous, and its inverse is T−a); hence if U is any neighbourhood of 0 in G , then
U +a is a neighbourhood of a in G , and conversely every neighbourhood of a appears
in this form. Thus the topology of G is uniquely determined by the neighbourhoods of
0 in G .

Lemma 10.1. Let H be the intersection of all neighbourhoods of 0 in G. Then

(1) H is a subgroup.
(2) H is the closure of {0}.
(3) G/H is Hausdorff.
(4) G is Hausdorff ⇔ H = 0.

Proof. (1) follows from the continuity of the group operations. For (2) we have:

x ∈ H ⇔ 0 ∈ x −U for all neighbourhoods U of 0 ⇔ x ∈ {0}.

(2) implies that the cosets of H are all closed; thus points are closed in G/H and so G/H
is Hausdorff. Thus H = 0 ⇒G is Hausdorff, and the converse is trivial. □

Assume for simplicity that 0 ∈ G has a countable fundamental system of neighbour-
hoods. Then the completion Ĝ of G may be defined in the usual way by means of Cauchy
sequences. A Cauchy sequence in G is defined to be a sequence (xν) of elements of G
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such that, for any neighbourhood U of 0, there exists an integer s(U ) with the property
that

xµ−xν ∈U for all µ,ν≥ s(U ).

Two Cauchy sequences are equivalent if xν − yν → 0 in G . The set of all equivalence
classes of Cauchy sequences is denoted by Ĝ . If (xν), (yν) are Cauchy sequences, so is
(xν+ yν), and its class in Ĝ depends only on the classes of (xν) and (yν). Hence we have
an addition in Ĝ with respect to which Ĝ is an abelian group. For each x ∈G the class of
the constant sequence (x) is an element φ(x) of Ĝ , and φ : G → Ĝ is a homomorphism
of abelian groups. Note that φ is not in general injective. In fact we have

Kerφ=⋂
U

where U runs through all neighboorhoods of 0 in G , and so by (10.1) φ is injective if and
only if G is Hausdorff.

If H is another abelian topological group and f : G → H a continuous homomorphism,
then the image under f of a Cauchy sequence in G is a Cauchy sequence in H , and
therefore f induces a homomorphism f̂ : Ĝ → Ĥ , which is continuous. If we have
G

f−→H
g−→K , then �g ◦ f = ĝ ◦ f̂ .

So far we have been quite general and G could for instance have been the additive group
of rationals with the usual topology, so that Ĝ would be the real numbers. Now, however,
we restrict ourselves to the special kind of topologies occurring in commutative algebra,
namely we assume that 0 ∈G has a fundamental system of subgroups

G =G0 ⊃G1 ⊃ ·· · ⊃Gn ⊃ . . .

and U ⊂G is a neighbourhood of 0 is and only if it contains some Gn . A typical example
is the p-adic topology on Z, in which Gn = pn Z. Note that in such topologies the sub-
groups Gn of G are both open and closed. In fact if g ∈Gn then g+Gn is a neighbourhoos
of g ; since g +Gn ⊂Gn this shows Gn is open. Hence for any h the coset h +Gn is open
and therefore

⋃
h∉Gn (h +Gn) is open; since this is the complement of Gn in G it follows

that Gn is closed.

For topologies given by sequences of subgroups there is an alternative purely algebraic
definition of the completion which is often convenient. Suppose (xν) is a Cauchy se-
quence in G . Then the image of xν in G/Gn is ultimately constant, equal say to ξn . If we
pass from n +1 to n it is clear that ξn+1 7→ ξn under the projection

G/Gn+1
θn+1−→G/Gn .

Thus a Cauchy sequence (xν) in G defines a coherent sequence (ξn) in the sense that

θn+1ξn+1 = ξn for all n.

Moreover it is clear that equivalent Cauchy sequences define the same sequence (ξn).
Finally, given any coherent sequence (ξn), we can construct a Cauchy sequence (xn) giv-
ing rise to it by taking xn to be any element in the coset ξn (so that xn+1−xn ∈Gn). Thus
Ĝ can equally well be defined as the set of coherent sequences (ξn) with the obvious
group structure.

We have now arrived at a special case of inverse limits. More generally, consider any
sequence of groups (An) and homomorphisms

θn+1 : An+1 → An .

We call this an inverse system, and the group of all coherent sequences (an) (i.e., an ∈ An

and θn+1an+1 = an) is called the inverse limit of the system. It is usually written lim←−− An ,
the homomorphisms θn being understood. With this notation we have

Ĝ = lim←−−G/Gn .
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The inverse limit definition of Ĝ has many advantages. Its main drawback is that it
presupposes a fixed choice of the subgroups Gn . Now we can have different sequences
of Gn defining the same topology and hence the same completion. Of course we could
define notions of equivalent inverse systems but the merit of the topological language
is precisely that such notions are already built into it.

The exactness properties of completions are best studied by inverse limits. First let us
observe that the inverse system (G/Gn) has the special property that θn+1 is alway sur-
jective. Any inverse system with this property we shall call a surjective system. Suppose
now that (An), (Bn), (Cn) are three inverse systems and that we have commutative dia-
grams of exact sequences

0 // An+1

��

// Bn+1

��

// Cn+1

��

// 0

0 // An
// Bn

// Cn
// 0

We shall then say that we have an exact sequence of inverse systems. The diagram cer-
tainly induces homomorphisms

0 → lim←−− An → lim←−−Bn → lim←−−Cn → 0

but this sequence is not always exact. However, we have

Proposition 10.2. If 0 → (An) → (Bn) → (Cn) → 0 is an exact sequence of inverse systems
then

0 → lim←−− An → lim←−−Bn → lim←−−Cn

is always exact. If, moreover, (An) is a surjective system then

0 → lim←−− An → lim←−−Bn → lim←−−Cn → 0

is exact.

Proof. Let A = ∏∞
n=1 An and define d A : A → A by d A(an) = (an − θn+1(an+1)). Then

Kerd A ≃ lim←−− An . Define B ,C and d B ,dC similarly. The exact sequence of inverse systems
then defines a commutative diagram of exact sequences

0 // A

d A

��

// B

d B

��

// C

dC

��

// 0

0 // A // B // C // 0

and hence by (2.10) an exact sequence

0 → Ker(d A) → Ker(d B ) → Ker(dC ) → Coker(d A) → Coker(d B ) → Coker(dC ) → 0

To complete the proof we have only to prove that

(An) surjective ⇒ d A surjective,

but this is clear because to show d A surjective we have only to solve inductively the
equations

xn −θn+1(xn+1) = an

for xn ∈ An , given an ∈ An □

Remark. The group Cokerd A is usually denoted lim←−−
1 An , since it is a derived functor in

the sense of homological algebra.
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Corollary 10.3. Let 0 →G ′ →G
p−→G ′′ → 0 be an exact sequence of groups. Let G have the

topology defined by a sequence (Gn) of subgroups, and give G ′,G ′′ the induced topologies.
i.e. by the sequences (G ′∩Gn), (pGn). Then

0 → Ĝ ′ → Ĝ → Ĝ ′′ → 0

is exact.

Proof. Apply (10.2) to the exact sequences

0 →G ′/(G ′∩Gn) →G/Gn →G ′′/pGn → 0

□

In particular we can apply (10.3) with G ′ =Gn , then G ′′ =G/Gn has the discrete topology
so that Ĝ ′′ =G ′′. Hence we deduce

Corollary 10.4. Ĝn is a subgroup of Ĝ and Ĝ/Ĝn ≃G/Gn . □

Taking inverse limits in (10.4) we deduce

Proposition 10.5. ̂̂G ≃ Ĝ. □

If φ : G → Ĝ is an isomorphism we shall say that G is complete. Thus (10.5) asserts that
the completion of G is complete. Note that our definitions of complete includes Haus-
dorff (by (10.1)).

The most important class of examples of topological groups of the kind we are consid-
ering are given by taking G = A, Gn = an , where a is an ideal in a ring A. The topology so
defined on A is called the a-adic topology, or just the a-topology. Since the an are ideals,
it is not hard to check that with this topology A is a topological ring, i.e. that the ring
operations are continuous. By (10.1) the topology is Hausdorff ⇔ ⋂

an = (0). The com-
pletion Â of A is again a topological ring;φ : A → Â is a continuous ring homomorphism,
whose kernel is

⋂
an .

Likewise for an A-module M : take G = M , Gn = an M . This defines the a-topology on M ,
and the completion M̂ of M is a topological Â-module (i.e. Â × M̂ → M̂ is continuous).
If f : M → N is any A-module homomorphism, then f (an M) = an f (M) ⊂ an N , and
therefore f is continuous (with respect to the a-topologies on M and N ) and so defines
f̂ : M̂ → N̂ .

Examples. 1) A = k[x], where k is a field and x an indeterminate; a = (x). Then Â =
k[[x]], the ring of formal power series.

2) A = Z, a = (p), p prime. Then Â = Zp is the ring of p-adic integers. Its elements are
infinite series

∑∞
n=0 an pn , 0 ≤ an ≤ p −1. We have pn → 0 as n →∞.

10.2. Filtrations. The a-topology of an A-module M was defined by taking the sub-
modules an M as basic neighbourhoods of 0, but there are other ways of defining the
same topology. An (infinite) chain M = M0 ⊃ M1 ⊃ ·· · ⊃ Mn ⊃ . . . , where the Mn are
submodules of M , is called a filtration of M , and denoted by (Mn). It is an a-filtration if
aMn ⊂ Mn+1 for all n, and a stable a-filtration3 if aMn = Mn+1 for all sufficiently large n.
Thus (an M) is a stable a-filtration.

Lemma 10.6. If (Mn), (M ′
n) are stable a-filtrations of M, then they have bounded dif-

ference: that is, there exists an integer n0 such that Mn+n0 ⊂ M ′
n and M ′

n+n0
⊂ Mn for

all n ≥ 0. Hence all stable a-filtrations determine the same topology on M, namely the
a-topology.

3Note by Editor: also called good [1, III, 3, 1],[4, II, A.5]
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Proof. Enough to take M ′
n = an M . Since aMn ⊂ Mn+1 for all n, we have an M ⊂ Mn ; also

aMn = Mn+1 for all n ≥ n0 say, hence Mn+n0 = an Mn0 ⊂ an M . □

10.3. Graded rings and modules. A graded ring is a ring A together with a family (An)n≥0

of subgroups of the additive group of A, such that A = ⊕∞
n=0 An and Am An ⊂ Am+n for

all m,n ≥ 0. Thus A0 is a subring of A, and each An is an A0-module.

Example. A = k[x1, . . . , xr ], An = set of all homogeneous polynomials of degree n.

If A is a graded ring, a graded A-module is an A-module M together with a family
(Mn)n≥0 of subgroups of M such that M =⊕∞

n=0 Mn and Am Mn ⊂ Mm+n for all m,n ≥ 0.
Thus each Mn is an A0-module. An element x of M is homogeneous if x ∈ Mn for some
n (n = degree of x). Any element y ∈ M can be written uniquely as a finite sum

∑
n yn

where yn ∈ Mn for all n ≥ 0, and all but a finite number of the yn are 0. The non-zero
components yn are called the homogeneous components of y .

If M , N are graded A-modules, a homomorphism of graded A-modules is an A-module
homomorphism f ; M → N such that f (Mn) ⊂ Nn for all n ≥ 0.

If A is a graded ring, let A+ =⊕
n>0 An . A+ is an ideal of A.

Proposition 10.7. The following are equivalent, for a graded ring A:

(1) A is a Noetherian ring;
(2) A0 is a Noetherian ring and A is finitely generated as an A0-algebra.

Proof. (1) ⇒ (2). A0 ≃ A/A+, hence is Noetherian. A+ is an ideal in A, hence is finitely
generated, say by x1, . . . , xs , which we may take to be homogeneous elements of A of
degrees k1, . . . ,ks say (all > 0). Let A′ be the subring of A generated by x1, . . . , xs over A0.
We shall show that An ⊂ A′ for all n ≥ 0, by induction on n. This is certainly true for
n = 0. Let n > 0 and let y ∈ An . Since y ∈ A+, y is a linear combination of the xi , say
y = ∑s

i=1 ai xi , where ai ∈ An−ki (conventionally Am = 0 if m < 0). Since each ki > 0,
the inductive hypothesis shows that each ai is a polynomial in the x’s with coefficients
in A0. Hence the same is true of y , and therefore y ∈ A′. Hence An ⊂ A′ and therefore
A = A′.

(2) ⇒ (1). By Hilbert’s basis theorem (7.6) □

Let A be a ring (not graded), a an ideal of A. Then we can form a graded ring A∗ =⊕∞
n=0a

n . Similarly, if M is an A-module and (Mn) is an a-filtration of M , then M∗ =⊕
n Mn is a graded A∗-moduke, since am Mn ⊂ Mm+n .

If A is Noetherian, a is finitely generated, say by x1, . . . , xr ; then A∗ = A[x1, . . . , xr ] and is
Noetherian by (7.6).

Lemma 10.8. Let A be a Noetherian ring, M a finitely generated A-module, (Mn) an a-
filtration of M. Then the following are equivalent:

(1) M∗ is a finitely generated A∗-module;
(2) The filtration (Mn) is stable.

Proof. Each Mn is finitely generated, hence so is each Qn =⊕n
r=0 Mr : this is a subgroup

of M∗ but not (in general) an A∗-submodule. However, it generates one, namely

M∗
n = M0 ⊕·· ·⊕Mn ⊕aMn ⊕a2Mn ⊕·· ·⊕ar Mn ⊕ . . .

Since Qn is finitely generated as an A-module, M∗
n is finitely generated as an A∗-module.

The M∗
n form an ascending chain, whose union is M∗. Since A∗ is Noetherian, M∗

is finitely generated as an A∗-module ⇔ the chain stops, i.e., M∗
n = M∗

n0
for some n0

⇔ Mn0+r = ar Mn0 for all r ≥ 0 ⇔ the filtration is stable. □
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Proposition 10.9 (Artin-Rees lemma). Let A be a Noetherian ring, a an ideal in A, M a
finitely generated A-module, (Mn) a stable a-filtration of M. If M ′ is a submodule of M,
then (M ′∩Mn) is a stable a-filtration of M ′.

Proof. We have a(M ′∩Mn) ⊂ aM ′∩aMn ⊂ M ′∩Mn+1, hence (M ′∩Mn) is an a-filtration.
Hence it defines a graded A∗-module which is a submodule of M∗ and therefore finitely
generated (since A∗ is Noetherian). Now use (10.8). □

Taking Mn = an M we optain what is usually known as the Artin-Rees lemma:

Corollary 10.10. There exists an integer k such that

(an M)∩M ′ = an−k(
(ak M)∩M ′)

for all n ≥ k. □

On the other hand, combining (10.9) with the elementary lemma (10.6) we obtain the
really significant version:

Theorem 10.11. Let A be a Noetherian ring, a an ideal, M a finitely generated A-module
and M ′ a submodule of M. Then the filtrations an M ′ and (an M)∩ M ′ have bounded
difference. In particular the a-topology of M ′ coincides with the topology induced by the
a-topology of M. □

Remark. In this chapter we shall apply the last part of (10.11) concerning topologies.
However, in the next chapter the stronger result about bounded differences will be needed.

As a first application of (10.11) we combine it with (10.3) to get the important exactness
property of completion:

Proposition 10.12. Let

0 → M ′ → M → M ′′ → 0

be an exact sequence of finitely generated modules over a Noetherian ring A. Let a be an
ideal of A, then the sequence of a-adic completions

0 → M̂ ′ → M̂ → M̂ ′′ → 0

is exact. □

Since we have a natural homomorphism A → Â we can regard Â as an A-algebra and
so for any A-module M we can form an Â-module Â ⊗A M . It is natural to ask how this
compares with the Â-module M̂ . Now the A-module homomorphism M → M̂ defines
an Â-module homomorphism

Â⊗A M → Â⊗A M̂ → Â⊗Â M̂ = M̂ .

In general, for arbitrary A and M , this is neither injective nor surjective, but we do have:

Proposition 10.13. For any ring A, if M is finitely generated, Â ⊗A M → M̂ is surjective.
If, moreover, A is Noetherian then Â⊗A M → M̂ is an isomorphism.

Proof. Useing (10.3) or otherwise it is clear that a-adic completion commutes with fi-
nite direct sums. Hence if F ≃ An we have Â ⊗A F ≃ F̂ . Now assume M is finitely gener-
ated so that we have an exact sequence

0 → N → F → M → 0.
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This gives rise to the commutative diagram

Â⊗A N

γ

��

// Â⊗A F

β

��

// Â⊗A M

α

��

// 0

0 // N̂ // F̂
δ // M̂ // 0

in which the top line is exact by (2.19). By (10.3) δ is surjective. Since β is an isomor-
phism this implies that α is surjective, proving the first part of the proposition. Assume
now that A is Noetherian, then N is also finitely generated so that γ is surjective and, by
(10.12), the bottom line is exact. A little diagram chasing now proves that α is injective
and so an isomorphism. □

Propositions (10.12) and (10.13) together assert that the functor M 7→ Â ⊗A M is exact
on the category of finitely generated A-modules (when A is Noetherian). As shown in
Chapter 2 this proves:

Proposition 10.14. If A is a Noetherian ring, a an ideal, Â the a-adic completion of A,
then Â is a flat A-algebra. □

Remark. For non finitely generated modules the functor M 7→ M̂ is not exact: the good
functor, which is exact, is M 7→ Â⊗A M and the two functors coincide on finitely gener-
ated modules.

We proceed now to study the ring Â in more detail. First some elementary propositions:

Proposition 10.15. If A is Noetherian, Â its a-adic completion, then

(1) â= Âa≃ Â⊗A a;
(2) ân = (â)n ;
(3) an/an+1 ≃ ân/ân+1;
(4) â is contained in the Jacobson radical of Â.

Proof. Since A is Noetherian, a is finitely generated. (10.13) implies that the map

Â⊗A a→ â,

whose image is Âa, is an isomorphism. This proves (1). Now apply (1) to an and we
deduce that

ân = Âan = (Âa)n by (1.18)

= (â)n by (1)

Applying (10.4) we now deduce

A/an ≃ Â/ân

from which (3) follows by taking quotients. By (2) and (10.5) we see that Â is complete
for its â-topology. Hence for any x ∈ â

(1−x)−1 = 1+x +x2 + . . .

converges in Â, so that 1− x is a unit. By (1.9) this implies that â is contained in the
Jacobson radical of Â. □

Proposition 10.16. Let A be a Noetherian local ring, m its maximal ideal. Then the m-
adic completion Â of A is a local ring with maximal ideal m̂.

Proof. By (10.15),(3) we have Â/m̂ ≃ A/m, hence Â/m̂ is a field and so m̂ is a maximal
ideal. By (10.15),(4) it follows that m̂ is the Jacobson radical of Â and so is the unique
maximal ideal. Thus Â is a local ring. □
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The important question of how much we lose on completion is answered by Krull’s The-
orem:

Theorem 10.17 (Krull’s theorem). Let A be a Noetherian ring, a an ideal, M a finitely
generated A-module and M̂ the a-completion of M. Then the kernel E = ⋂∞

n=1a
n M of

M → M̂ consists of those x ∈ M annihilated by some element of 1+a.

Proof. Since E is the intersection of all neighbourhoods of 0 ∈ M , the topology induced
on it is trivial, i.e., E is the only neighbourhood of 0 ∈ E . By (10.11) the induced topology
on E coincides with its a-topology. Since aE is a neighbourhood in the a-topology it
follows that aE = E . Since M is finitely generated and A is Noetherian, E is also finitely
generated and so we can apply (2.5) and deduce from aE = E that (1−α)E = 0 for some
α ∈ a. The converse is obvious: if (1−α)x = 0, then

x =αx =α2x = ·· · ∈
∞⋂

n=1
an M = E .

□

Remarks. 1) If S is the multiplicatively closed set 1+a, then (10.17) asserts that

A → Â and A → S−1 A

have the same kernel. Moreover for any α ∈ â
(1−α)−1 = 1+α+α2 + . . .

converges in Â, so that every element of S becomes a unit in Â. By the universal property
of S−1 A this means that there is a natural homomorphism S−1 A → Â and (10.17) implies
that this is injective. Thus S−1 A can be identified with a subring of Â.

2) Krull’s Theorem (10.17) may be false if A is not Noetherian. Let A be the ring of all C∞
functions on the real line, and let a be the ideal of all f which vanish at the origin (a is
maximal since A/a≃ R). In fact a is generated by the identity function x, and

⋂∞
n=1a

n is
the set of all f ∈ A, all of whose derivatives vanish at the origin. On the other hand f is
annihilated by some element 1+α (α ∈ a) if and only if f vanishes identically in some

neighbourhood of 0. The well-known function e−1/x2
, which is not identically zero near

0, but has vanishing derivatives at 0, then shows that the kernels of

A → Â and A → S−1 A (S = 1+a)

do not coincide. Thus A is not Noetherian.

Krull’s Theorem has many corollaries:

Corollary 10.18. Let A be a Noetherian domain, a ̸= (1) an ideal of A. Then
⋂
an = 0.

Proof. 1+a contains no zero-divisors. □

Corollary 10.19. Let A be a Noetherian ring, a an ideal of A contained in the Jacobson
radical and let M be a finitely generated A-module. Then the a-topology of M is Haus-
dorff, i.e.

⋂
an M = 0.

Proof. By (1.9) every element of 1+a is a unit. □

As a particular special case of (10.19) we have:

Corollary 10.20. Let A be a Noetherian local ring, m its maximal ideal, M a finitely gen-
erated A-module. Then the m-topology of M is Hausdorff. In particular the m-topology
of A is Hausdorff. □



90 M. F. ATIYAH AND I. G. MACDONALD

We can restate (10.20) slightly differently if we recall that an m-primary ideal of A is
just any ideal contained between m and some power mn (use (4.2) and (7.14)). Thus
(10.20) implies that the intersection of all m-primary ideals of A is zero. If now A is any
Noetherian ring, p a prime ideal, we can apply this version of (10.20) to the local ring Ap.
Lifting back to A and using the one-to-one correspondence (4.8) between p-primary
ideals of A and m-primary ideals of Ap (where m= pAp) we deduce:

Corollary 10.21. Let A be a Noetherian ring, p a prime ideal of A. Then the intersection
of all p-primary ideals of A is the kernel of A → Ap.

10.4. The associated graded ring. Let A be a ring and a an ideal of A. Define

G(A) =Ga(A) =
∞⊕

n=0
an/an+1 (a0 = A).

This is a graded ring, in which the multiplication is defined as follows: For each xn ∈ an ,
let x̄n denote the image of xn in an/an+1; define x̄m x̄n to be xm xn , i.e., the image of xm xn

in am+n/am+n+1; check that x̄m x̄n does not depend on the particular representatives
chosen.

Similarly, if M is an A-module and (Mn) is an a-filtration of M , define

G(M) =
∞⊕

n=0
Mn/Mn+1

which is a graded G(A)-module in a natural way. Let Gn(M) denote Mn/Mn+1.

Proposition 10.22. Let A be a Noetherian ring, a an ideal of A. Then

(1) Ga(A) is Noetherian;
(2) Ga(A) and Gâ(Â) are isomorphic as graded rings;
(3) if M is a finitely generated A-module and (Mn) is a stable a-filtration of M, then

G(M) is a finitely generated graded Ga(A)-module.

Proof. (1) Since A is Noetherian, a is finitely generated, say by x1, . . . , xs . Let x̄i be the
image of xi in a/a2, then G(A) = (A/a)[x̄1, . . . , x̄s ]. Since A/a is Noetherian, G(A) is Noe-
therian by the Hilbert basis theorem.

(2) an/an+1 ≃ ân/ân+1 by (10.15), (3).

(3) There exists n0 such that Mn0+r = ar Mn0 for all r ≥ 0, hence G(M) is generated by⊕
n≤n0 Gn(M). Each Gn(M) = Mn/Mn+1 is Noetherian and annihilated by a, hence is a

finitely generated A/a-module, hence
⊕

n≤n0 Gn(M) is generated by a finite number of
elements (as an A/a-module), hence G(M) is finitely generated as a G(A)-module. □

The last main result of this chapter is that the a-adic completion of a Noetherian ring
is Noetherian. Before we can proceed to the proof we need a simple lemma connecting
the completion of any filtered group and the associated graded group.

Lemma 10.23. Let φ : A → B be a homomorphism of filtered groups, i.e. φ(An) ⊂ Bn ,
and let G(φ) : G(A) →G(B), φ̂ : Â → B̂ be the induced homomorphisms of the associated
graded and completed groups. Then

(1) G(φ) injective ⇒ φ̂ injective;
(2) G(φ) surjective ⇒ φ̂ surjective.
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Proof. Consider the commutative diagram of exact sequences

0 // An/An+1

Gn (φ)

��

// A/An+1

αn+1

��

// A/An

αn

��

// 0

0 // Bn/Bn+1
// B/Bn+1

// B/Bn
// 0.

This gives the exact sequence

0 → KerGn(φ) → Kerαn+1 → Kerαn → CokerGn(φ) → Cokerαn+1 → Cokerαn → 0

From this we see, by induction on n, that Kerαn = 0 (case (1)) or Cokerαn = 0 (case (2)).
Moreover in case (2) we also have Kerαn+1 → Kerαn surjective. Taking the inverse limit
of the homomorphisms αn and applying (10.2) the lemma follows. □

We can now form a result which is a partial converse of (10.22), (3) and is the main step
in showing that Â is Noetherian.

Proposition 10.24. Let A be a ring, a an ideal of A, M an A-module, (Mn) an a-filtration
of M. Suppose that A is complete in the a-topology and that M is Hausdorff in its fil-
tration topology (i.e. that

⋂
n Mn = 0). Suppose also that G(M) is a finitely generated

G(A)-module. Then M is a finitely generated A-module.

Proof. Pick a finite set of generators of G(M), and split them up into their homogeneous
components, say ξi (1 ≤ i ≤ r ) where ξi has degree say n(i ), and is therefore the image
of say xi ∈ Mn(i ). Let F i be the module A with the stable a-filtration givven by F i

k =
ak+n(i ) and put F = ⊕r

i=1 F i . Then mapping the generator 1 of each F i to xi defines a
homomorphism

φ : F → M

of filtered groups, and G(φ) : G(F ) → G(M) is a homomorphism of G(A)-modules. By
construction it is surjective. Hence by (10.23), (2) φ̂ is surjective. Consider now the
diagram

F

α
��

φ // M

β
��

F̂
φ̂ // M̂

Since F is free and A = Â) it follows that α is an isomorphism. Since M is Hausdorff β
is injective. The surjectivity of φ̂ thus implies the surjectivity of φ, and this means that
x1, . . . , xr generate M as an A-module. □

Corollary 10.25. With the hypotheses of (10.24), if G(M) is a Noetherian G(A)-module,
then M is a Noetherian A-module.

Proof. We have to show that every submodule M ′ of M is finitely generated (6.2). Let
M ′

n = M ′∩Mn ; then (M ′
n) is an a-filtration of M ′, and the embedding M ′

n → Mn gives
rise to an injective homomorphism M ′

n/M ′
n+1 → Mn/Mn+1, hence to an embedding of

G(M ′) in G(M). Since G(M) is Noetherian, G(M ′) is finitely generated by (6.2); also M ′
is Hausdorff, since

⋂
M ′

n ⊂⋂
Mn = 0; hence by (10.24) M ′ is finitely generated. □

We can now deduce the result we are after:

Theorem 10.26. If A is a Noetherian ring, a an ideal of A, then the a-completion Â of A
is Noetherian.
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Proof. By (10.22) we know that
Ga(A) =Gâ(Â)

is Noetherian. Now apply (10.25) to the complete ring Â, taking M = Â, filtered by ân ,
and so Hausdorff. □

Corollary 10.27. If A is a Noetherian ring, the power series ring B = A[[x1, . . . , xn]] in n
variables is Noetherian. In particular k[[x1, . . . , xn]] (k a field) is Noetherian.

Proof. A[x1, . . . , xn] is Noetherian by the Hilbert basis theorem, and B is its completion
for the (x1, . . . , xn)-adic topology. □

10.5. Exercises.

(1) Letαn : Z/pZ → Z/pn Z be the injection of abelian groups given byαn(1) = pn−1,
and let α : A → B be the direct sum of all the αn (where A is a countable direct
sum of copies of Z/pZ, and B is the direct sum of the Z/pn Z). Show that the
p-adic completion of A is just A but that the completion of A for the topology
induced from the p-adic topology of B is the direct product of the Z/pZ. De-
duce that p-adic completion is not a right-exact functor on the category of all
Z-modules.

(2) In Exercise (1), let An =α−1(pnB), and consider the exact sequence

0 → An → A → A/An → 0

Show that lim←−− is not right exact, and compute lim←−−
1 An .

(3) Let A be a Noetherian ring, a an ideal and M a finitely generated A-module.
Using Krull’s Theorem and Exercise (14) of Chapter 3, prove that

∞⋂
n=1

an M = ⋂
m⊃a

Ker(M → Mm),

where m runs over all maximal ideals containing a.
Deduce that

M̂ = 0 ⇔ Supp (M)∩V (a) =∅ (in Spec(A))

[The reader should think of M̂ as the Taylor expansion of M transversal to the
subscheme V (a): the above result then shows that M is determined in a neigh-
bourhood of V (a) by its Taylor expansion.]

(4) Let A be a Noetherian ring, a an ideal in A, and Â the a-adic completion. For
x ∈ A, let x̂ be the image of x in Â. Show that

x not a zero-divisor in A ⇒ x̂ not a zero-divisor in Â.

Does this imply that

A is an integral domain ⇒ Â is an intergal domain?

[Apply the exactness of completion to the sequence 0 → A
x−→A.]

(5) Let A be a Noetherian ring and let a,b be ideals in A. If M is any A-module, let
Ma, Mb denote its a-adic and b-adic completions respectively. If M is finitely
generated, prove that (Ma)b ≃ Ma+b.
[Take the a-adic completions of the exact sequence

0 → bm M → M → M/bm M → 0

and apply (10.13). Then use the isomorphisms

lim←−−
m

(
lim←−−

n
M/(an M +bm M)

)≃ lim←−−
n

M/(an M +bn M)

and the inclusions (a+b)2n ⊂ an +bn ⊂ (a+b)n .]
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(6) Let A be a Noetherian ring and a an ideal in A. Prove that a is contained in the
Jacobson radical of A if and only if every maximal ideal of A is closed for the
a-topology. (A Noetherian topological ring in which the topology is defined by
an ideal in the Jacobson radical is called a Zariski ring. Examples are local rings
and (by (10.15), (4)) a-adic completions.)

(7) Let A be a Noetherian ring, a an ideal of A, and Â the a-adic completion. Prove
that Â is faithfully flat over A, (Chapter 3, Exercise (16)) if and only if A is a
Zariski ring (for the a-topology).
[Since Â is flat over A it is enough to show that

M → M̂ injective for all finitely generated M ⇔ A is Zariski;

now use (10.19) and Exercise (6).]
(8) Let A be the local ring of the origin in Cn (i.e., the ring of all rational functions

f /g ∈ C(z1, . . . , zn) with g (0) ̸= 0), let B be the ring of power series in z1, . . . , zn

which converge in some neighbourhood of the origin, and let C be the ring of
formal power series in z1, . . . , zn , so that A ⊂ B ⊂ C . Show that B is a local ring
and that its completion for the maximal ideal topology is C . Assuming that B is
Noetherian, prove that B is A-flat. [Use Chapter 3, Exercise (17), and Exercise
(7) above.]

(9) Let A be a local ring, m its maximal ideal. Assume that A is m-adically com-
plete. For any polynomial f (x) ∈ A[x], let f̄ (x) ∈ (A/m)[x] denote its reduction
modm. Prove Hensel’s lemma: if f (x) is monic of degree n and if there exist co-
prime monic polynomials ḡ (x), h̄(x) ∈ (A/m)[x] of degrees r,n − r with f̄ (x) =
ḡ (x)h̄(x), then we can lift ḡ (x), h̄(x) back to monic polynomials g (x),h(x) ∈
A[x] such that f (x) = g (x)h(x). Assume inductively that we have constructed
gk (x),hk (x) ∈ A[x] such that gk (x)hk (x)− f (x) ∈mk A[x]. Then use the fact that
since ḡ (x), h̄(x) are coprime we can find āp (x), b̄p (x), of degrees≤ n−r,r respec-
tively, such that xp = āp ḡk + b̄p h̄k , where p is any integer such that 1 ≤ p ≤ n.
Finally, use the completeness of A to show that the sequences gk (x),hk (x) con-
verge to the required g (x),h(x).

(10) (a) With the notation of Exercise (9), deduce from Hensel’s lemma that if f̄ (x)
has a simple root α ∈ A/m, then f (x) has a simple root a ∈ A such that
α≡ a mod m.

(b) Show that 2 is a square in the ring of 7-adic integers.
(c) Let f (x, y) ∈ k[x, y], where k is a field, and assume that f (0, y) has y =

a0 as a simple root. Prove that there exists a formal power series y(x) =∑∞
n=0 an xn such that f (x, y(x)) = 0.

(This gives the analytic branch of the curve f = 0 through the point (0, a0).)
(11) Show that the converse of (10.26) is false, even if we assume that A is local and

that Â is a finitely generated A-module.
[Take A to be the ring of germs of C∞ functions of x at x = 0, and use Borel’s
Theorem that every power series occurs as the Taylor expansion of some C∞
function.]

(12) If A is Noetherian, then A[[x1, . . . , xn]] is a faithfully flat A-algebra. [Express
A → A[[x1, . . . , xn]] as a composition of flat extensions, and use Exercise (5e) of
Chapter 1.]

11. DIMENSION THEORY

One of the basic notions in algebraic geometry is that of the dimension of a variety. This
is essentially a local notion, and, as we shall show in this chapter, there is a very satisfac-
tory theory of dimension for general Noetherian local rings. The main theorem asserts
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the equivalence of three different definitions of dimension. Two of these definitions
have a fairly obvious geometrical content, but the third involving the Hilbert function
is less conceptual. It has, however, many technical advantages and the whole theory
becomes more streamlined if one brings it in at an early stage.

After dealing with dimension we give a brief account of regular local rings, which corre-
spond to the notion of non-singularity in algebraic geometry. We establish the equiva-
lence of three definitions of regularity.

Finally we indicate how, in the case of algebraic varieties over a field, the local dimen-
sions we have defined coincide with the transcendence degree of the funtion field.

11.1. Hilbert functions. Let A =⊕∞
n=0 An be a Noetherian graded ring. By (10.7) A0 is a

Noetherian ring, and A is generated (as an A0-algebra) by say x1, . . . , xs , which we may
take to be homogeneous, of degree k1, . . . ,ks (all > 0).

Let M be a finitely generated graded A-module. Then M is generated by a finite number
of homogeneous elements, say m j (1 ≤ j ≤ t ); let r j = degm j . Every element of Mn , the
homogeneous component of M of degree n, is thus of the form

∑
j f j (x)m j , where the

f j (x) ∈ A is homogeneous of degree n − r j (and therefore zero if n < r j ). It follows that
Mn is finitely generated as an A0-module, namely it is generated by all g j (x)m j where
g j (x) is a monomial in the xi of total degree n − r j .

Let λ be an additive function (with values in Z) on the class of all finitely generated A0-
modules (Chapter 2, Exact sequences (2.6)). The Poincaré series of M (with respect to λ)
is the generating function of λ(Mn), i.e., it is the power series

P (M , t ) =
∞∑

n=0
λ(Mn)t n ∈ Z[[t ]].

Theorem 11.1 (Hilbert, Serre). The Poincaré series of M is a rational function in t of the
form

P (M , t ) = f (t )∏s
i=1(1− t ki )

where f (t ) ∈ Z[t ]

Proof. By induction on s, the number of generators of A over A0. Start with s = 0; this
means that An = 0 for all n > 0, so that A = A0 and M is a finitely generated A-module,
hence Mn = 0 for all large n. Thus P (M , t ) is a polynomial in this case.

Now suppose s > 0 and the theorem true for s −1. Multiplication by xs is an A-module
homomorphism of Mn into Mn+ks , hence it gives an exact sequence, say

(11.1) 0 → Kn → Mn
xs−→Mn+ks → Ln+ks → 0

Let K = ⊕
n Kn , L = ⊕

n Ln ; these are both finitely generated A-modules (because K is
a submodule and L a quotient module of M), and both are annihilated by xs hence are
A[x1, . . . , xs−1]-modules. Applying λ to (11.1) we have, by (2.11)

λ(Kn)−λ(Mn)+λ(Mn+ks )−λ(Ln+ks ) = 0;

Multiplying by t n+ks and summing up with respect to n we get

(11.2) (1− t ks )P (M , t ) = P (L, t )− t ks P (K , t )+ g (t )

where g (t ) is a polynomial. Applying the inductive hypothesis the result now follows.
□

The order of the pole of P (M , t ) ar t = 1 we shall denote by d(M). It provides a measure
of the size of M (relative to λ). In particular d(A) is defined. The case when all ki = 1 is
specially simple:
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Corollary 11.2. If each ki = 1, then for all sufficiently large n, λ(Mn) is a polynomial in
n (with rational coefficients) of degree4 d −1.

Proof. By (11.1) we have λ(Mn) = coefficient of t n in f (t ) · (1− t )−s . Cancelling powers
of (1− t ) we may assume s = d and f (1) ̸= 0. Suppose f (t ) =∑N

k=0 ak t k ; since

(1− t )−d =
∞∑

k=0

(
d +k −1

d −1

)
t k

we have

λ(Mn) =
N∑

k=0
ak

(
d +n −k −1

d −1

)
for all n ≥ N ,

and the sum on the right-hand side is a polynomial in n with leading term (
∑

ak ) nd−1

(d−1)! ̸=
0. □

Remarks. 1) For a polynomial f (x) to be such that f (n) is an integer for all integers n, it
is not necessary for f to have integer coefficients: e.g. 1

2 x(x +1).

2) The polynomial in (11.2) is usually called the Hilbert function (or polynomial) of M
(with respect to λ).

Returning now to the sequence (11.1) let us replace xs by any element x ∈ Ak which is
not a zero-divisor in M (i.e., xm = 0 ⇒ m = 0). Then K = 0 and equation (11.2) shows
that

d(L) = d(M)−1.

Thus we proved

Proposition 11.3. If x ∈ Ak is not a zero-divisor in M then d(M/xM) = d(M)−1. □

We shall use (11.1) in case where A0 is an Artin ring (in particular, a field) and λ(M) is
the length ℓ(M) of a finitely generated A0-module M . By (6.9) ℓ(M) is additive.

Example. Let A = A0[x1, . . . , xs ], where A0 is an Artin ring and the xi are independent
indeterminates. Then An is a free A0-module generated by the monomials xm1

1 . . . xms
s

where
∑

mi = n; there are
(s+n−1

s−1

)
of these, hence P (A, t ) = (1− t )−s .

We shall now consider the Hilbert functions obtained from a local ring by passing to the
associated graded rings as in Chapter 10.

Proposition 11.4. Let A be a Noetherian local ring, m its maximal ideal, q an m-primary
ideal, M a finitely generated A-module, (Mn) a stable q-filtration of M. Then

(1) M/Mn is of finite length, for each n ≥ 0;
(2) for all sufficiently large n this length is a polynomial g (n) of degree≤ s in n, where

s is the least number of generators of q;
(3) the degree and leading coefficient of g (n) depend only on M and q, not on the

filtration chosen.

Proof. (1) Let G(A) = ⊕
n q

n/qn+1, G(M) = ⊕
n Mn/Mn+1. G0(A) = A/q is an Artin local

ring, say by (8.5); G(A) is Noetherian, and G(M) is a finitely generated graded G(A)-
module (10.22). Each Gn(M) = Mn/Mn+1 is a Noetherian A-module annihilated by

4We adopt the convention here that the degree of the zero polynomial is −1; also that the binomial coeffi-
cient

( n
−1

)= 0 for n ≥ 0, and = 1 for n =−1.
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q, hence a Noetherian A/q-module, and therefore of finite length (since A/q is Artin).
Hence M/Mn is of finite length, and

(11.3) ℓn = ℓ(M/Mn) =
n∑

r=1
ℓ(Mr−1/Mr ).

(2) If x1, . . . , xs generate q; the images x̄i of the xi in q/q2 generate G(A) as an A/q-
algebra, and each x̄i has degree 1. Hence by (11.2) we have ℓ(Mn/Mn+1) = f (n) say,
f (n) is a polynomial in n of degree ≤ s − 1 for all large n. Since from (11.3) we have
ℓn+1 −ℓn = f (n), it follows that ℓn is a polynomial g (n) of degree ≤ s, for all large n.

(3) Let (M ′
n) be another stable q-filtration of M , and let g ′(n) = ℓ(M/M ′

n). By (10.6) the
two filtrations have bounded difference, i.e., there exists an integer n0 such that Mn+n0 ⊂
M ′

n , M ′
n+n0

⊂ Mn for all n ≥ 0; consequently we have g (n +n0) ≥ g ′(n) and g ′(n +n0) ≥
g (n). Since g and g ′ are polynomial for all large n, we have limn→∞ g (n)/g ′(n) = 1, and
therefore g , g ′ have the same degree and leading coefficient. □

The polynomial g (n) corresponding to the filtration (qn M) is denoted by χM
q (n):

χM
q (n) = ℓ(M/qn M) (for all large n).

If M = A, we write χq(n) for χA
q (n) and call it the characteristic polynomial of the m-

primary ideal q. In this case (11.4) gives

Corollary 11.5. For all large n, the length ℓ(A/qn) is a polynomial χq(n) of degree ≤ s,
where s is the least number of generators of q. □

Proposition 11.6. If A, m, q are as above degχq(n) = degχm(n).

Proof. We have m⊃ q⊃mr for some r by (7.16), hence mn ⊃ qn ⊃mr n and therefore

χm(n) ≤χq(n) ≤χm(r n) for all large n.

Now let n →∞, remembering that the χ’s are polynomial in n. □

The common degree of the χq(n) will be denoted by d(A): in view of (11.2) this means
we are putting d(A) = d(Gm(A)) where d(Gm(A)) is the integer defined earlier as the
pole at t = 1 of the Hilbert function of Gm(A).

11.2. Dimension theory of Noetherian local rings. Let A be a Noetherian local ring, m
its maximal ideal.

Let δ(A) = least number of generators of an m-primary ideal of A. Our ambition is to
prove that δ(A) = d(A) = dim A. We shall achieve this by proving δ(A) ≥ d(A) ≥ dim A ≥
δ(A). (11.5) and (11.6) together provide the first link in this chain:

Proposition 11.7. δ(A) ≥ d(A). □

Next we shall prove the analogue for local rings of (11.3). Note that this proof uses the
strong version of the Artin-Rees lemma (not just the topological part).

Proposition 11.8. Let A, m, q be as before. Let M be a finitely generated A-module, x ∈ A
a non-zero divisor in M and M ′ = M/xM. Then

degχM ′
q ≤ degM

q −1.
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Proof. Let N = xM ; then N ≃ M as A-modules, by virtue of the assumption on x. Let
Nn = N ∩qn M . Then we have exact sequences

0 → N /Nn → M/qn M → M ′/qn M ′ → 0

Hence, if g (n) = ℓ(N /Nn), we have

g (n)−χM
q (n)+χM ′

q (n) = 0

for all large n. Now by Artin-Rees (10.9), (Nn) is a stable q-filtration of N . Since N ≃
M , (11.4), (3) then implies that g (n) and χM

q (n) have the same leading term; hence the
result. □

Corollary 11.9. If A is a Noetherian local ring, x a non-zero divisor in A, then d(A/(x)) ≤
d(A)−1.

Proof. Put M = A in (11.8). □

We can now prove the crucial result:

Proposition 11.10. d(A) ≥ dim A.

Proof. By induction on d = d(A). If d = 0 then ℓ(A/mn) is constant for all large n, hence
mn =mn+1 for some n, hence mn = 0 by Nakayama’s lemma (2.6). Thus A is an Artin ring
and dim A = 0.

Suppose d > 0 and let p0 ⊊ p1 ⊊ · · ·⊊ pr be any chain of prime ideals in A. Let x ∈ p1, x ∉
p0; let A′ = A/p0, and let x ′ be the image of x in A′. Then x ′ ̸= 0, and A′ is an integral
domain, hence by (11.9) we have

d(A′/(x ′)) ≤ d(A′)−1.

Also, if m′ is the maximal ideal of A′, A′/m′n is a homomorphic image of A/mn , hence
ℓ(A/mn) ≥ ℓ(A′/m′n) and therefore d(A) ≥ d(A′). Consequently

d(A′/(x ′)) ≤ d(A)−1 = d −1.

Hence, by the inductive hypothesis, the length of any chain of prime ideals in A′/(x ′)
is ≤ d − 1. But the images of p1, . . . ,pr in A′/(x ′) form a chain of length r − 1, hence
r −1 ≤ d −1 and consequently r ≤ d . Hence dim A ≤ d . □

Corollary 11.11. If A is a Noetherian local ring, dim A is finite. □

If A is any ring, p a prime ideal in A, then the height of p is defined to be the supremum of
chains of prime ideals p0 ⊊ p1 ⊊ · · ·⊊ pr = p which end at p: by (3.13) height p= dim Ap.
Hence, from (11.11) :

Corollary 11.12. In a Noetherian ring every prime ideal has finite height, and therefore
the set of prime ideals in A Noetherian ring satisfies the descending chain condition. □

Remark. Likewise we may define the depth5 of p, by considering chains of prime ideals
which start at p: clearly depth p = dim A/p. But the depth of a prime ideal, even in a
Noetherian ring, may be infinite (unless the ring is local). See Exercise (4).

Proposition 11.13. Let A be a Noetherian local ring of dimension d. Then there exists an
m-primary ideal in A generated by d elements x1, . . . , xd and therefore dim A ≥ δ(A).

5Note by Editor: this terminology was obsolete, when the book appeared: it should have been called co-
height, see [4, III-2]; depth is a different concept, see [4, IV-14].
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Proof. Construct x1, . . . , xd inductively in such a way that every prime ideal containing
(x1, . . . , xi ) has height ≥ i , for each i . Suppose i > 0 and x1, . . . , xi−1 constructed. Let p j

(1 ≤ j ≤ s) be the minimal prime ideals (if any) of (x1, . . . , xi−1) which have height exactly
i −1. Since i −1 < d = dim A = height m, we have m ̸= p j (1 ≤ j ≤ s), hence m ̸= ⋃s

j=1p j

by (1.11). Choose xi ∈m, xi ∉ ⋃
p j , and let q be any prime containing (x1, . . . , xi ). Then

q contains some minimal prime ideal p of (x1, . . . , xi−1). If p = p j for some j , we have
xi ∈ q, xi ∉ p, hence q ⊋ p and therefore height q ≥ i ; if p ̸= p j (1 ≤ j ≤ s), then height
p≥ i , hence height q≥ i . Thus every prime ideal containing (x1, . . . , xi ) has height ≥ i .

Consider then (x1, . . . , xd ). If p is a prime ideal of this ideal, p has height ≥ d , hence p=m
(for p⊊m⇒ height p< height m= d). Hence the ideal (x1, . . . , xd ) is m-primary. □

Theorem 11.14 (Dimension theorem). For any Noetherian local ring A the following
three integers are equal:

(1) the maximum length of chains of prime ideals in A;
(2) the degree of the characteristic polynomial χm(n) = ℓ(A/mn);
(3) the least number of generators of an m-primary ideal of A.

Proof. (11.7), (11.10), (11.13). □

Example. Let A be the polynomial ring k[x1, . . . , xn] localized at the maximal ideal m=
(x1, . . . , xn). Then Gm(A) is a polynomial ring in n indeterminates and so its Poincaré
series is (1− t )−n . Hence, using the equivalence of (1) and (2) in (11.14), we deduce that
dim Am = n.

Corollary 11.15. dim A ≤ dimk (m/m2).

Proof. If xi ∈m (1 ≤ i ≤ s) are such that their images in m/m2 form a basis of this vector
space, then the xi generate m by (2.8); hence dimk (m/m2) = s ≥ dim A by (11.13). □

Corollary 11.16. Let A be Noetherian ring, x1, . . . , xr ∈ A. Then every minimal ideal p
belonging to (x1, . . . , xr ) has height ≤ r .

Proof. InAp the ideal (x1, . . . , xr ) becomes pe -primary, hence r ≥ dim Ap = height p. □

Corollary 11.17 (Krull’s principal ideal theorem). Let A be a Noetherian ring and let x
be an element of A which is neither a zero-divisor nor a unit. Then every minimal prime
ideal p of (x) has height 1.

Proof. By (11.16), height p ≤ 1. If height p = 0, then p is a prime ideal belonging to 0,
hence every element of p is a zero-divisor by (4.7): contradiction, since x ∈ p. □

Corollary 11.18. Let A be a Noetherian local ring, x an element of m which is not a zero-
divisor. Then dim A/(x) = dim A−1.

Proof. Let d = dim A/(x). By (11.9) and (11.14) we have d ≤ dim A − 1. On the other
hand, let xi (1 ≤ i ≤ d) be elements of m whose images in A/(x) generate an m/(x)-
primary ideal. Then the ideal (x, x1, . . . , xd ) in A is m-primary, hence d +1 ≥ dim A. □

Corollary 11.19. Let Â be the m-adic completion of A. Then dim A = dim Â.

Proof. A/mn ≃ Â/m̂n from (10.15), hence χm(n) =χm̂(n). □

If x1, . . . , xd generate an m-primary ideal, and d = dim A, we call x1, . . . , xd a system of pa-
rameters. They have a certain independence property described in the follwoing propo-
sition.
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Proposition 11.20. Let x1, . . . , xd be a system of parameters for A and let q = (x1, . . . , xd )
be them-primary ideal generated by them. Let f (t1, . . . , td ) be a homogeneous polynomial
of degree s with coefficients in A, and assume that

f (x1, . . . , xd ) ∈ qs+1.

Then all the coefficients of f lie in m.

Proof. Consider the epimorphism of graded rings

α : (A/q)[t1, . . . , td ] →Gq(A)

given by ti 7→ x̄i , where ti are indeterminates and x̄i is xi mod q. The hypothesis on
f implies that f̄ (t1, . . . , td ) (the reduction of f mod q) is in the kernel of α. Assume if
possible that some coefficients of f is a unit, then f̄ is not a zero-divisor (cf. Chapter 1,
Exercise (3)). Then we have

d(Gq(A)) ≤ d
(
(A/q)[t1, . . . , td ]/( f̄ )

)
because f̄ ∈ Ker(α)

= d
(
(A/q)[t1, . . . , td ]

)−1 by (11.3)

= d −1 by the example following (11.3)

But d(Gq(A)) = d by the main theorem (11.14). This gives the required contradiction.
□

This proposition takes a simple form if A contains a field k mapping isomorphically
onto the residue field A/m:

Corollary 11.21. If k ⊂ A is a field mapping isomorphically onto A/m and if x1, . . . , xd is
a system of parameters, then x1, . . . , xd are algebraically independent over k

Proof. Assume f (x1, . . . , xd ) = 0 where f is a polynomial with coefficients in k. If f ̸=
0 we can write f = fs+ higher terms, where fs is homogeneous of degree s and fs ̸=
0. Apply (11.20) to fs and we deduce that fs has all its coefficients in m. Since fs has
coefficients in k this implies fs = 0, a contradiction. Hence x1, . . . , xd are algebraically
independent over k. □

11.3. Regular local rings. in algebraic geometry there is an important distinction be-
tween singular and non-singular (see Exercise (1)). The local rings of non-singular
points have as their generalization (to the non-geometric case) what are called regu-
lar local rings: these are rings satisfying any of the (equivalent) conditions (1)-(3) of the
next theorem.

Theorem 11.22. Let A be a Noetherian local ring of dimension d, m its maximal ideal,
k = A/m. Then the following are equivalent:

(1) Gm(A) ≃ k[t1, . . . , td ] where the ti are independent indeterminates;
(2) dimk (m/m2) = d;
(3) m can be generated by d elements.

Proof. (1) ⇒ (2) is clear. (2) ⇒ (3) by (2.8): see proof of (11.15). (3) ⇒ (1): let m =
(x1, . . . , xd ), then by (11.20) the map α : k[x1, . . . , xd ] → Gm(A) is an isomorphism of
graded rings. □

A regular local rings is necessarily an integral domain: this is a consequence of the fol-
lowing more general result.

Lemma 11.23. Let A be a ring, a an ideal of A such that
⋂

n a
n = 0. Suppose that Ga(A)

is an integral domain. Then A is an integral domain.
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Proof. Let x, y be non-zero elements of A. Then since
⋂
an = 0 there exists integers

r, s ≥ 0 such that x ∈ ar , x ∉ ar+1, y ∈ as , y ∉ as+1. Let x̄, ȳ denote the images of x, y in
Gr (A),Gs (A) respectively. Then x̄ ̸= 0, ȳ ̸= 0, hence x y = x̄ · ȳ ̸= 0, hence x y ̸= 0. □

Hence by (9.2) the regular local rings of dimension 1 are precisely the discrete valuation
rings.

It can also be shown that if A is a local ring and Gm(A) is an integrally closed integral
domain, then A is integrally closed. It follows that a regular local ring is integrally closed;
but there are integrally closed local domains of dimension > 1 which are not regular.

Proposition 11.24. Let A be a Noetherian local ring. Then A is regular if and only if Â is
regular.

Proof. By (10.16), (10.26) and (11.19) we know that Â is a Noetherian local ring of the
same dimension as A with m̂ as maximal ideal. Now use (10.22) which asserts that
Gm(A) =Gm̂(Â) and the result follows. □

Remarks. 1) It follows from what we have said above that Â is also an integral domain.
Geometrically speaking this means that (locally)

non-singularity ⇒ analytic irreducibility

or that, at a non-singular point, there is only one analytic branch.

2) If A contains a field k mapping isomorphically onto A/m (the geometric case) then
(11.22) implies that Â is a formal power series ring over k in d indeterminates. Thus the
completion of local rings of non-singular points on d-dimensional varieties over k are
all isomorphic.

Example. Let A = k[x1, . . . , xn] (k any field, xi independent indeterminates); let m =
(x1, . . . , xn). Then Am (the local ring of affine space kn at the origin) is a regular local
ring: for Gm(A) is a polynomial ring in n variables.

11.4. Transcendental dimension. We shall conclude this brief treatment of dimension
theory by showing how the dimension of local rings connects up with the dimension of
varieties defined classically in terms of the funtion field.

Assume for simplicity that k is an algebraically closed field and let V be an irreuducible
affine variety over k. Thus the coordinate ring A(V ) is of the form

A(V ) = k[x1, . . . , xn]/p

where p is a prime ideal. The field of fractions of the integral domain A(V ) is called
the field of rational function on V and is denoted by k(V ). It is a finitely generated
extension of k and so has a finite transcendence degree over k—the maximum number
of algebraically independent elements. This number is defined to be the dimension of
V . Now recall that, by the Nullstellensatz, the points of V correspond bijectively with
the maximal ideals of A(V ). If P is a point with maximal ideal m we shall call dim A(V )m
the local dimension of V at P . We propose to prove

Theorem 11.25. For any irreducible variety V over k the local dimension of V at any
point is equal to dimV .

Remark. We already know by (11.21) that dimV ≥ dim Am for all m. The problem is to
prove the opposite inequality, and for this purpose the main lemma is:

Lemma 11.26. Let B ⊂ A be integral domains with B integrally closed and A integral over
B. Let m be a maximal ideal of A, and let n =m∩B. Then n is maximal and dim Am =
dimBn.
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Proof. This is an easy consequence of the results of Chapter 5. First n is maximal by
(5.8). Next if

m⊋ q1 ⊋ q2 ⊋ · · ·⊋ qd(11.4)

is a strict chain of primes in A, its intersection with B is by (5.9) a strict chain of primes

n⊋ p1 ⊋ p2 ⊋ · · ·⊋ pd(11.5)

This proves dimBn ≥ dim Am. Conversely given the strict chain (11.5) we can, by (5.16),
lift this chain to a chain (11.4) (necessarily strict): thus dim Am ≥ dimBn. □

We can now proceed to:

Proof of (11.25). By the Normalization Lemma (Chapter 5, Exercise (16)), we can find a
polynomial ring B = k[x1, . . . , xd ] contained in A(V ) such that d = dimV and A(V ) is in-
tegral over B . Since B is integrally closed (remark following (5.12)) we can apply (11.26)
and this reduces our task to proving (11.25) for the ring B , i.e. for affine space. But any
point of affine space can be taken as the origin of coordinates and, as we have already
seen, k[x1, . . . , xd ] localized at the maximal ideal (x1, . . . , xn) is a local ring of dimension
d . □

Corollary 11.27. For every maximal ideal m of A(V ) we have

dim A(V ) = dim A(V )m.

Proof. By definition we have dim A(V ) = supm dim A(V )m. But by (11.25) all A(V )m
have the same dimension. □

11.5. Exercises.

(1) Let f ∈ k[x1, . . . , xn] be an irreducible polynokmial over an algebraically closed
field k. A point P on the variety f (x) = 0 is non-singular ⇔ not all the partial
derivatives ∂ f /∂xi vanish at P . Let A = k[x1, . . . , xn]/( f ), and let m be the maxi-
mal ideal of A corresponding to the point P . Prove that P is non-singular ⇔ Am

is a regular local ring.
[By (11.18) we have dim Am = n −1. Now

m/m2 ≃ (x1, . . . , xn)/(x1, . . . , xn)2 + ( f )

and has dimension n −1 if and only if f ∉ (x1, . . . , xn)2.]
(2) In (11.21) assume that A is complete. Prove that the homomorphism k[[t1, . . . , td ]] →

A given by ti 7→ xi (1 ≤ i ≤ d) is injective and that A is a finitely generated mod-
ule over k[[t1, . . . , td ]]. [Use (10.24).]

(3) Extend (11.25) to non-algebraically-closed fields. [If k̄ is the algebraic closure of
k, then k̄[x1, . . . , xn] is integral over k[x1, . . . , xn].]

(4) An example of a Noetherian domain of infinite dimension (Nagata). Let k be a
field and let A = [x1, x2, . . . , xn , . . . ] be a polynomial ring over k in a countably in-
finite set of indeterminates. Let m1,m2, . . . be an increasing sequence of positive
integers such that mi+1 −mi > mi −mi−1 for all i > 1. Let pi = (xmi+1, . . . , xmi+1 )
and let A be the complement in A of the union of the ideals pi .

Each pi is a prime ideal and therefore the set S is multiplicatively closed. The
ring S−1 A is Noetherian by Chapter 7, Exercise (9). Each S−1pi has height equal
to mi+1 −mi , hence dimS−1 A =∞.

(5) Reformulate (11.1) in terms of the Grothendieck group K (A0) (Chapter 7, Exer-
cise (26)).
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(6) Let A be a ring (not necessarily Noetherian). Prove that

1+dim A ≤ dim A[x] ≤ 1+2dim A,

[Let f : A → A[x] be the embedding and consider the fiber of f ∗ : Spec(A[x]) →
Spec(A) over a prime ideal p of A. This fiber can be identified with the spectrum
of k ⊗A A[x] ≃ k[x], where k is the residue field at p (Chapter 3, Exercise (21)),
and dimk[x] = 1. Now use Exercise (7b) of Chapter 4.]

(7) Let A be a Noetherian ring. Then

dim A[x] = 1+dim A,

and hence, by induction on n,

dim A[x1, . . . , xn] = n +dim A.

[Let p be a prime ideal of height m in A. Then there exist a1, . . . , am ∈ p such that
p is a minimal prime ideal belonging to the ideal a= (a1, . . . , am). By Exercise (7)
of Chapter 4, p[x] is a minimal prime ideal of a[x] and therefore height p[x] ≤ m.
On the other hand, a chain of prime ideals p0 ⊊ p1 ⊊ · · ·⊊ pm = p gives rise to
a chain p0[x] ⊊ · · ·⊊ pm[x] = p[x] , hence height p[x] ≥ m. Hence height p[x] =
height p. Now use the argument of Exercise (6).]
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